- Будущее вычислительной техники: вместо битовых компьютеров будут квантовые (4 фото)
- О квантовых вычислениях
- Восстание персональных компьютеров
- Введите квант
- Что это означает?
- Квантовые вычисления и вы
- Заключение
- IT История
- История IT-Компаний
- Новости it-компаний
- IBM — Время первых Электронно-Вычислительных Машин (ЭВМ)
- Новые продукты Fujitsu Siemens Computers на базе процессоров
- От истории до новостей
- История ЭВМ
- Авторизация
- Развитие технологий:
- Компьютеры третьего поколения (1965-1975)
- Компьютеры четвертого поколения (1970-1985)
- Популярные
- Компьютеры будущего
- Молекулярные компьютеры
- Биокомпьютеры
- Оптические компьютеры
- Квантовые компьютеры
- Что дальше?
Будущее вычислительной техники: вместо битовых компьютеров будут квантовые (4 фото)
Компьютеры когда-то считались технологиями, доступными только ученым и обученным специалистам. Но произошел сейсмический сдвиг в истории вычислений во второй половине 1970-х годов. Мало того, что машины стали намного меньше и мощнее. Они стали доступны каждому для использования в своем собственном доме.
О квантовых вычислениях
Сегодня квантовые вычисления находятся в зачаточном состоянии. Они включают в себя некоторые из самых изнурительных концепций из физики 20-го века. В США Google, IBM и NASA экспериментируют и создают первые квантовые компьютеры. Китай также активно инвестирует в данные технологии.
А вы верите в то, что произойдет аналогичный сдвиг в сторону квантовых вычислений, когда энтузиасты смогут играть с квантовыми компьютерами из своих домов? Это произойдет гораздо раньше, чем думает большинство людей.
Восстание персональных компьютеров
Первые компьютеры были созданы в 1950-х годах. Они были большими, часто ненадежными и, по сегодняшним меркам, не особенно мощными. Они были предназначены для решения глобальных задач, таких как разработка первой водородной бомбы.
В 1964 году Джон Кемени и Томас Курц написали язык BASIC. Их цель состояла в том, чтобы создать простой язык программирования, который был бы легок в изучении и позволил бы использовать его каждому. В результате программирование перестало быть исключительно для высококвалифицированных ученых. Любой мог этому научиться, если бы захотел.
Этот сдвиг в вычислительной технике продолжился, когда первые домашние компьютеры появились в конце 1970-х годов. Любители теперь могли купить свой собственный компьютер и программировать его дома. Родители и дети могли учиться вместе. Эти первые компьютеры были не очень мощными, и вы могли делать с ними ограниченное количество вещей, но они были чрезвычайно восторженно восприняты.
Когда люди играли со своими машинами, они поняли, что им нужно больше возможностей и больше мощности. Основатели Microsoft и Apple поняли, что у домашнего компьютера огромное будущее.
Почти каждый американец теперь имеет ноутбук, планшет или смартфон — или все три. Они проводят много времени в социальных сетях, электронной коммерции и поиске в Интернете.
Ни один из этих видов деятельности не существовал в 1950-х годах. Никто в то время не мог помышлять о таком. Именно доступность нового инструмента, компьютера, привела к их разработке.
Введите квант
Классические вычисления, такие, которые осуществляет компьютер в вашем доме, основаны на вычислениях людей. Машина разбивает все вычисления на их основные части: двоичные цифры 0 и 1. В настоящее время наши компьютеры используют биты из двоичных цифр — потому что их легко реализовать с помощью переключателей, которые находятся либо в положении «включено», либо «выключено».
Квантовое вычисление основано на том, как вычисляет вселенная. Оно содержит все классические вычисления, но также включает в себя несколько новых концепций, пришедших из квантовой физики.
Вместо битов у квантового вычисления есть кубиты. Однако результат квантовых вычислений точно такой же, как и при классических вычислениях: количество битов.
Разница в том, что во время этого процесса компьютер может манипулировать кубитами с помощью битов. Он может поместить кубиты в суперпозицию состояний и запутать их.
Что это означает?
И суперпозиция, и запутанность являются понятиями квантовой механики, с которыми большинство людей не знакомы. Суперпозиция примерно означает, что кубит может быть в комбинации как 0, так и 1. Запутанность означает корреляцию между кубитами. Когда измеряется один из пары запутанных кубитов, это сразу показывает, какое значение вы получите, когда будете измерять его партнера. Это то, что Эйнштейн назвал «жутким действием на расстоянии».
Математика, необходимая для полного описания квантовой механики, устрашает, и этот фон необходим для проектирования и построения квантового компьютера. Но математика, необходимая для понимания квантовых вычислений и для начала проектирования квантовых схем, гораздо проще: алгебра средней школы — это, по сути, единственное требование.
Квантовые вычисления и вы
Квантовые компьютеры только начинают создаваться. Это большие машины, которые ненадежные и еще не очень мощные.
Для чего они будут использоваться? Квантовые вычисления имеют важные приложения в криптографии. В 1994 году математик из Массачусетского технологического института Питер Шор показал, что, если квантовые компьютеры будут построены, они смогут сломать современные методы шифрования в Интернете. Это стимулировало создание новых способов шифрования данных, способных противостоять квантовым атакам, открыв эпоху постквантовой криптографии.
Также, похоже, что квантовые вычисления, вероятно, окажут большое влияние на химию. Существуют определенные реакции, которые классическим компьютерам трудно моделировать. Химики надеются, что квантовые компьютеры будут эффективны при моделировании этих явлений.
Но мы не думаем, что имеет смысл рассуждать о том, что большинство людей будут делать с квантовыми компьютерами через 50 лет. Когда квантовые вычисления станут чем-то, что каждый может использовать в своем доме?
Ответ в том, что это уже возможно. В 2016 году IBM добавила небольшой квантовый компьютер в облако. Любой, имеющий подключение к Интернету, может спроектировать и запустить свои собственные квантовые схемы на этом компьютере. Квантовый контур — это последовательность основных шагов, которые выполняют расчет.
Квантовый компьютер IBM не только бесплатен в использовании, но и имеет простой графический интерфейс. Это небольшая, не очень мощная машина, похожая на первые домашние компьютеры, но любители уже могут начать играть. Сдвиг начался.
Заключение
Люди вступают в эпоху, когда учиться и экспериментировать с квантовыми вычислениями просто. Как и в случае с первыми домашними компьютерами, может быть неясно, что существуют проблемы, которые необходимо решить с помощью квантовых компьютеров, но, когда люди играют, я думаю, что они, вероятно, обнаружат, что им нужно больше мощности и больше функций. Это откроет путь для новых приложений, о которых мы еще не догадываемся.
Источник
IT История
История IT-Компаний
Новости it-компаний
IBM — Время первых Электронно-Вычислительных Машин (ЭВМ)
Во время Второй мировой войны компания вынуждена была переориентировать свои производственные мощности и начать выполнение об.
Новые продукты Fujitsu Siemens Computers на базе процессоров
Новые четырехпроцессорные серверы PRIMERGY H450 и R450 ориентированы на жизненно важные для бизнеса приложения и ис.
От истории до новостей
История ЭВМ
Авторизация
Развитие технологий:
Компьютеры третьего поколения (1965-1975)
В компьютерах третьего поколения уже использовались интегральные микросхемы, что привело к радикальному уменьшению габаритов, а развитие сетевых технологий и реализация до.
Компьютеры четвертого поколения (1970-1985)
Начало 70-х ознаменовалось поистине революционными преобразованиями в элементной базе компьютеров: в 1971 году по заказу производителя калькуляторов компании Busicom корпорация In.
Популярные
Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние которого на развитие научно-технического прогресса трудно переоценить. Области применения ЭВМ непрерывно расширяются. Этому в значительной степени способствует распространение персональных ЭВМ, и особенно микро ЭВМ.
Перспективы развития ЭВМ в первую очередь заложено обязательное уменьшение размеров компьютеров, неуклонное увеличение их быстродействия и объема памяти. Также согласно сегодняшней тенденции, уровень глобальных сетей будет увеличиваться, в связи с этим будут разрабатываться новые методы хранения, обработки, представления информации. Будут совершенствоваться способы передачи информации с учетом скорости, безопасности и качества.
Виртуальная реальность остаётся одним из самых интересных и загадочных понятий компьютерной индустрии. Виртуальная реальность — это образ искусственного мира, моделируемый техническими средствами и передаваемый человеку через ощущения. В данный момент технологии виртуальной реальности широко применяются в различных областях человеческой деятельности.
По словам учёных и исследователей, в ближайшем будущем персональные компьютеры кардинально изменятся. Примерно в 2020-2025 годах должны появиться молекулярные компьютеры, квантовые компьютеры, биокомпьютеры и оптические компьютеры. Компьютер будущего должен облегчить и упростить жизнь человека ещё в десятки раз!
Одна из указанных вероятностных альтернатив замены современных компьютеров является создание оптических ЭВМ, носителем информации в которых будет световой сгусток. Проникновение оптических способов в вычислительную технику ведется по трем фронтам. Первое основано на использовании аналоговых интерференционных оптических вычислений для решения отдельных особых задач, связанных с необходимостью быстрого выполнения интегральных преобразований. Второе направление связно с созданием чисто оптических или гибридных соединений, обладающих большей надежностью, чем электрические. И третье направление – создание компьютера, полностью состоящего из оптических устройств обработки информации.
Другие виды компьютеров – молекулярные. Молекулярные компьютеры – это ЭВМ, использующие вычислительные возможности молекул преимущественно биологических, также используется идея вычислительных возможностей расположения атомов в пространстве. Квантовый компьютер – ЭВМ, которое путем выполнения квантовых алгоритмов существенно использует при работе эффекты, такие как квантовый параллелизм и квантовая запутанность. Нанокомпьютеры – вычислительные устройства на основе электронных технологий с размерами логических элементов порядка нескольких нанометров. Сам компьютер также имеет микроскопические размеры. Другое направление связано с разработками биокомпьютеров – клеточные и ДНК-компьютеры.
Однако квантовые компьютеры, биокомпьютеры, нанокомпьютеры и другие направления – все это на сегодняшний момент всего лишь гипотетические вычислительные устройства, которые под собой не имеют логических решений.
Высокие технологии – это будущее и это успех всего человечества. Ежедневно выпускаются новые и более совершенны модели ЭВМ. И на этом процесс развития не остановлен.
Источник
Компьютеры будущего
Будущее может быть разным, и путей к нему тоже много, но ни то, ни другое предсказать невозможно. И все же кое-какие широкие штрихи набросать можно, причем в большинстве сценариев прогресс приводит к изменению способа нашего общения, объема информации, с которой нам придется иметь дело, и, возможно, даже наших природных способностей.
Технология микропроцессоров уже приближается к фундаментальным ограничениям. Следуя закону Мура, к 2010 — 2020 годам размеры транзистора должны уменьшиться до четырех-пяти атомов. Рассматриваются многие альтернативы, но, если они не будут реализованы в массовом производстве, закон Мура перестанет работать. Этот закон (вернее, прогноз соучредителя Intel Гордона Мура) гласит, что плотность транзисторов в микросхеме удваивается каждые полтора года, и все последние 20 лет он выполнялся. Если в начале нового столетия рост производительности микропроцессоров прекратится, в вычислительной технике наступит стагнация. Но возможно, что вместо этого произойдет технологический скачок с тысячекратным увеличением мощности компьютеров.
Последний сценарий очень привлекателен. Мало того, что целый ряд технологий получит необходимое развитие, разработки в одних областях помогут продвижению других. Инженер Рэй Курцвейл (Ray Kurzweil) называет это «законом взаимного усиления выгод». Когда в развитии какой-то области происходит скачок, время между открытиями сокращается и предыдущие достижения накладываются на следующие, что еще больше ускоряет прогресс.
К технологиям, способным экспоненциально увеличивать обрабатывающую мощность компьютеров, следует отнести молекулярные или атомные технологии; ДНК и другие биологические материалы; трехмерные технологии; технологии, основанные на фотонах вместо электронов; и наконец, квантовые технологии, в которых используются элементарные частицы. Если на каком-нибудь из этих направлений удастся добиться успеха, то компьютеры могут стать вездесущими. А если таких успешных направлений будет несколько, то они распределятся по разным нишам. Например, квантовые компьютеры будут специализироваться на шифровании и поиске в крупных массивах данных, молекулярные — на управлении производственными процессами и микромашинах, а оптические — на средствах связи.
Возможности современного производства пока не позволяют наладить недорогое массовое изготовление подобных устройств. Однако многие ученые уверены в том что решение будет найдено. Уже есть свидетельства определенного взаимного усиления выгод по Курцвейлу. Например, эффективность «генетических чипов» удалось повысить (а стоимость — понизить) благодаря использованию других чипов, содержащих полмиллиона маленьких зеркал, — первоначально они предназначались для оптических систем связи. Цифровая микрозеркальная система (Digital Micromirror Device, DMD) от Texas Instruments применялась даже для демонстрации последней серии фильма «Звездные войны». Точно так же микромашины (micro-electro-mechanical systems, MEMS) изготавливаются с применением технологии травления, разработанной для производства электронных микросхем. В этих устройствах датчики сочетаются с микроприводами, что позволяет им выполнять физические действия. Возможно даже, что MEMS помогут в создании компьютеров атомных размеров, необходимых для квантовых вычислений.
В наступающем веке вычислительная техника сольется не только со средствами связи и машиностроения, но и с биологическими процессами, что откроет такие возможности, как создание искусственных имплантантов, интеллектуальных тканей, разумных машин, «живых» компьютеров и человеко-машинных гибридов. Если закон Мура проработает еще 20 лет, уже в 2020 году компьютеры достигнут мощности человеческого мозга — 20000000 миллиардов операций в секунду (это 100 млрд. нейрон ов умножить на 1000 связей одного нейрон а и на 200 возбуждений в секунду). А к 2060 году компьютер сравняется по силе разума со всем человечеством. Одной вероятности подобной перспективы достаточно, чтобы отбросить любые опасения по поводу применения био- и генной инженерии для расширения способностей человека.
«Я не верю в научную фантастику типа «Звездного пути», где через 400 лет люди остаются прежними, — сказал астрофизик Стивен Хокинг (Stephen Hawking), выступая в прошлом году в Белом доме. — По-моему, человеческая раса и сложность ее ДНК очень скоро начнут меняться».
Однако для этого вычислительная техника будущего столетия должна вобрать в себя некоторые новейшие технологии. Ниже приводится обзор нескольких новых технологий и процессов, способных не только обеспечить продолжение действия закона Мура, но и превратить его из линейного в прогрессирующий.
Молекулярные компьютеры
Недавно компания Hewlett-Packard объявила о первых успехах в изготовлении компонентов, из которых могут быть построены мощные молекулярные компьютеры. Ученые из HP и Калифорнийского университета в Лос-Анджелесе (UCLA) объявили о том, что им удалось заставить молекулы ротаксана переходить из одного состояния в другое — по существу, это означает создание молекулярного элемента памяти.
Следующим шагом должно стать изготовление логических ключей, способных выполнять функции И, ИЛИ и НЕ. Весь такой компьютер может состоять из слоя проводников, проложенных в одном направлении, слоя молекул ротаксана и слоя проводников, направленных в обратную сторону. Конфигурация компонентов, состоящих из необходимого числа ячеек памяти и логических ключей, создается электронным способом. По оценкам ученых HP, подобный компьютер будет в 100 млрд. раз экономичнее современных микропроцессоров, занимая во много раз меньше места.
Сама идея этих логических элементов не является революционной: кремниевые микросхемы содержат миллиарды таких же. Но преимущества в потребляемой энерги и и размерах способны сделать компьютеры вездесущими. Молекулярный компьютер размером с песчинку может содержать миллиарды молекул. А если научиться делать компьютеры не трехслойными, а трехмерными, преодолев ограничения процесса плоской литографии, применяемого для изготовления микропроцессоров сегодня, преимущества станут еще больше.
Кроме того, молекулярные технологии сулят появление микромашин, способных перемещаться и прилагать усилие. Причем для создания таких устройств можно применять даже традиционные технологии травления. Когда-нибудь эти микромашины будут самостоятельно заниматься сборкой компонентов молекулярного или атомного размера.
Первые опыты с молекулярными устройствами еще не гарантируют появления таких компьютеров, однако это именно тот путь, который предначертан всей историей предыдущих достижений. Массовое производство действующего молекулярного компьютера вполне может начаться где-нибудь между 2005 и 2015 годами.
Биокомпьютеры
Применение в вычислительной технике биологических материалов позволит со временем уменьшить компьютеры до размеров живой клетки. Пока эта чашка Петри, наполненная спиралями ДНК, или нейрон ы, взятые у пиявки и подсоединенные к электрическим проводам. По существу, наши собственные клетки — это не что иное, как биомашины молекулярного размера, а примером биокомпьютера, конечно, служит наш мозг.
Ихуд Шапиро (Ehud Shapiro) из Вейцманоского института естественных наук соорудил пластмассовую модель биологического компьютера высотой 30 см. Если бы это устройство состояло из настоящих биологических молекул, его размер был бы равен размеру одного из компонентов клетки — 0,000025 мм. По мнению Шапиро, современные достижения в области сборки молекул позволяют создавать устройства клеточного размера, которое можно применять для биомониторинга.
Более традиционные ДНК-компьютеры в настоящее время используются для расшифровки геном а живых существ. Пробы ДНК применяются для определения характеристик другого генетического материала: благодаря правилам спаривания спиралей ДНК, можно определить возможное расположение четырех базовых аминокислот (A, C, T и G).
Чтобы давать полезную информацию, цепочки ДНК должны содержать по одному базовому элементу. Это достигается при помощи луча света и маски. Для получения ответа на тот или иной вопрос, относящийся к геном у, может потребоваться до 80 масок, при помощи которых создается специальный чип стоимостью более 12 тыс. дол. Здесь-то и пригодилась микросхема DMD от Texas Instruments: ее микрозеркала, направляя свет, исключают потребность в масках.
Билл Дитто (Bill Ditto) из Технологического института штата Джорджия провел интересный эксперимент, подсоединив микродатчики к нескольким нейрон ам пиявки. Он обнаружил, что в зависимости от входного сигнала нейрон ы образуют новые взаимосвязи. Вероятно, биологические компьютеры, состоящие из нейроподобных элементов, в отличие от кремниевых устройств, смогут искать нужные решения посредством самопрограммирования. Дитто намерен использовать результаты своей работы для создания мозга роботов будущего.
Оптические компьютеры
По сравнению с тем, что обещают молекулярные или биологические компьютеры, оптические ПК могут показаться не очень впечатляющими. Однако ввиду того, что оптоволокно стало предпочтительным материалом для широкополосной связи, всем традиционным кремниевым устройствам, чтобы передать информацию на расстояние нескольких миль, приходится каждый раз преобразовывать электрические сигналы в световые и обратно.
Эти операции можно упростить, если заменить электронные компоненты чисто оптическими. Первыми станут оптические повторители и усилители оптоволоконных линий дальней связи, которые позволят сохранять сигнал в световой форме при передаче через все океаны и континенты. Со временем и сами компьютеры перейдут на оптическую основу, хотя первые модели, по-видимому, будут представлять собой гибриды с применением света и электричества. Оптический компьютер может быть меньше электрического, так как оптоволокно значительно тоньше (и быстрее) по сравнению с сопоставимыми по ширине полосы пропускания электрическими проводниками. По существу, применение электронных коммутатор ов ограничивает быстродействие сетей примерно 50 Гбит/с. Чтобы достичь терабитных скоростей потребуются оптические коммутатор ы (уже есть опытные образцы). Это объясняет, почему в телекоммуникациях побеждает оптоволокно: оно дает тысячекратное увеличение пропускной способности, причем мультиплексирование позволяет повысить ее еще больше. Инженеры пропускают по оптоволокну все больше и больше коротковолновых световых лучей. В последнее время для управления ими применяются чипы типа TI DMD с сотнями тысяч микрозеркал. Если первые трансатлантические медные кабели позволяли передавать всего 2500 Кбит/с, то первое поколение оптоволоконных кабелей — уже 280 Мбит/с. Кабель, проложенный сейчас, имеет теор етический предел пропускной способности в 10 Гбит/с на один световой луч определенной длины волны в одном оптическом волокне.
Недавно компания Quest Communications проложила оптический кабель с 96 волокнами (48 из них она зарезервировала для собственных нужд), причем по каждому волокну может пропускаться до восьми световых лучей с разной длиной волны. Возможно, что при дальнейшем развитии технологии мультиплексирования число лучей увеличится еще больше, что позволит расширять полосу пропускания без замены кабеля.
Целиком оптические компьютеры появятся через десятилетия, но работа в этом направлении идет сразу на нескольких фронтах. Например, ученые из университета Торонто создали молекулы жидких кристаллов, управляющие светом в фотонном кристалле на базе кремния. Они считают возможным создание оптических ключей и проводников, способных выполнять все функции электронных компьютеров.
Однако прежде чем оптические компьютеры станут массовым продуктом, на оптические компоненты, вероятно, перейдет вся система связи — вплоть до «последней мили» на участке до дома или офиса. В ближайшие 15 лет оптические коммутатор ы, повторители, усилители и кабели заменят электрические компоненты.
Квантовые компьютеры
Квантовый компьютер будет состоять из компонентов субатомного размера и работать по принципам квантовой механики. Квантовый мир — очень странное место, в котором объекты могут занимать два разных положения одновременно. Но именно эта странность и открывает новые возможности.
Например, один квантовый бит может принимать несколько значений одновременно, то есть находиться сразу в состояниях «включено», «выключено» и в переходном состоянии. 32 таких бита, называемых q-битами, могут образовать свыше 4 млрд комбинаций — вот истинный пример массово-параллельного компьютера. Однако, чтобы q-биты работали в квантовом устройстве, они должны взаимодействовать между собой. Пока ученым удалось связать друг с другом только три электрона.
Уже есть несколько действующих квантовых компонентов — как запоминающих, так и логических. Теоретически квантовые компьютеры могут состоять из атомов, молекул, атомных частиц или «псевдоатомов». Последний представляет собой четыре квантовых ячейки на кремниевой подложке, образующих квадрат, причем в каждой такой ячейке может находиться по электрону. Когда присутствуют два электрона, силы отталкивания заставляют их размещаться по диагонали. Одна диагональ соответствует логической «1», а вторая — «0». Ряд таких ячеек может служить проводником электронов, так как новые электроны будут выталкивать предыдущие в соседние ячейки. Компьютеру, построенному из таких элементов, не потребуется непрерывная подача энерги и. Однажды занесенные в него электроны больше не покинут систему.
Теоретики утверждают, что компьютер, построенный на принципах квантовой механики, будет давать точные ответы, исключая возможность ошибки. Так как в основе квантовых вычислений лежат вероятностные законы, каждый q-бит на самом деле представляет собой и «1», и «0» с разной степенью вероятности. В результате действия этих законов менее вероятные (неправильные) значения практически исключаются.
Насколько близко мы подошли к действующему квантовому компьютеру? Прежде всего необходимо создать элементы проводников, памяти и логики. Кроме того, эти простые элементы нужно заставить взаимодействовать друг с другом. Наконец, нужно встроить узлы в полноценные функциональные чипы и научиться тиражировать их. По оценкам ученных, прототипы таких компьютеров могут появиться уже в 2005 году, а в 2010-2020 годах должно начаться их массовое производство.
Что дальше?
Термин «квантовый скачок» означает, что в квантовом мире изменения происходят скачками. Похоже, что где-то около 2020 года, если не раньше, подобный скачок произойдет и в вычислительной технике: к тому времени мы перейдем от традиционных кремниевых полупроводников к более совершенным технологиям.
Результатом станут намного более компактные, быстродействующие и дешевые компьютеры. Появится возможность наделять любые промышленные продукты определенными интеллектуальными и коммуникационными способностями. Банка кока-колы помещенная в холодильник, на самом деле будет саморегистрироваться в его сети; предметы — автоматически упорядочиваться. Каждый человек ежесекундно будет пользоваться Сетью, хотя за большинством обращений к нему будут следить специальные устройства, автоматически отвечая на вызовы или переадресовывая их в службу передачи сообщений.
К 2030 году может начаться распространение вживленных устройств с прямым доступом к нейрон ам. Ближе к середине столетия в мире киберпространства будут царить микро- и наноустройства (интеллектуальная пыль). К тому времени Интернет будет представлять собой отображение всего реального мира. Представьте себе мир, окутанный беспроводной сетью данных, по которой путешествуют огромные объемы информации. Тогда такие фантастические и мист ические явления, как телепатия и телекинез, станут самым простым проявлением Всемирной сети. Грубо говоря, телепатия будет выглядеть как сгенерированная вашими нейрон ами информация, путешествуя в пакетах к другим нейрон ам для расшифровки. Почти как протокол TCP/IP сегодня. А телекинез (передвижение мыслью физических объектов) будут производить наноустройства, активированные вашей мысленной командой. Простейшие устройства, реагирующие на мысленные команды, существуют уже и сегодня. Хотя к тому времени вам вряд ли захочется передвигать реальные объекты, если возможно будет просто переместить их цифровые копии. Без шлемов виртуальной реальности можно будет совершить полноценный круиз в любой уголок земного шара, не покидая своей квартиры. Мысленно можно будет вызвать цифровую проекцию любого места, причем события в нем будут отображаться в реальном времени. Или наоборот, спроецировать себя, в любую точку нашей планеты. Таким образом, грань между кибер- и реальным пространством исчезнет.
На биологическом фронте исследования в области клетки приближают возможность замены тканей или органов, включая нейрон ы, которые раньше считались незаменимыми. Более того, клетки и ткани можно будет наделять способностями обработки и передачи данных. Подобный контроль над живыми процессами дает надежду на увеличение продолжительности жизни: ученые не видят принципиальных препятствий к тому, чтобы люди жили по несколько сотен лет.
К концу 21-го века, благодаря достижениям генной инженерии в сочетании с биоинженерными тканями и имплантантами, люди станут совсем не похожими на современных. Пока не ясно, какой процент населения пожелает принять участие в подобных усовершенствованиях, но отказавшиеся рискуют остаться сторонними наблюдателями, следя с обочины за тем, как люди, развитые биоинженерными методами, гигантскими шагами устремляются вперед рука об руку с разумными машинами. Могу себе представить, как в какой-то момент человечество разделится на два лагеря, будут социальные волнения, но прогресс не остановить. Если все это будет происходить, как прогнозируется, годах в 2050-х, то, как вы думаете, кто будет самой консервативной частью общества? Правильно — нынешняя молодежь, правда, к тому времени немного постаревшая. Примерно, как сейчас бабушки и дедушки недоверчиво косятся на коробчатые компьютеры, так же будущее старшее поколение будет недоверчиво смотреть на своих детей, получающих биологические имплантанты при рождении и общающихся не открывая рта.
Конечно, заглянуть вперед более чем на несколько лет можно лишь чисто умозрительно, хотя в том что ко второй половине этого века обрабатывающая мощность компьютеров превысит интеллектуальные способности человека, можно не сомневаться. Вполне вероятно, что к тому времени начнется и колонизация Солнечной системы. А к 22-му веку и люди, и компьютеры широко распространятся по ее планетам и начнут готовиться к освоению ближайших звездных систем.
Пока здравый смысл не приспособился к переменчивому миру квантовой механики, это будущее кажется чуждым такому знакомому современному миру. Путешествие во времени может завести и в рай, и в ад, но во всяком случае скучным его не назовешь.
Источник