Характеристики современных источников света
В настоящее время светотехническая промышленность выпускает широчайший ассортимент источников света, предназначенных для использования в различных осветительных установках. Наряду с лампами накаливания (ЛН) и люминесцентными лампами (ЛЛ), нашедшими широкое распространение в практике осветительной техники, используются ксеноновые и натриевые лампы, ртутно-кварцевые лампы с исправленной цветностью и другие.
Люминесцентные лампы обладают не только рядом преимуществ перед традиционными лампами накаливания (экономичность, длительный срок службы, благоприятный спектр излучения), но и отдельными недостатками. К недостаткам ЛЛ следует отнести пульсацию светового потока, являющуюся следствием их малой инерционности. По данным многочисленных исследований отклонения наибольших и наименьших значений светового потока от среднего значения (коэффициент пульсации) у ЛЛ составляют от 24% (ЛБ) до 41%(ЛД). В результате пульсации светового потока ЛЛ возникает дополнительное утомление работающих, а также возможен стробоскопический эффект, наличие которого недопустимо при работе с движущимися объектами.
В нормативных документах содержатся рекомендации использовать для освещения помещений, оборудованных ПЭВМ компактные люминесцентные лампы (КЛЛ). Рассмотрим их характеристики.
Компактные люминесцентные лампы по принципу своего действия практически не отличаются от обычных люминесцентных (электрический разряд генерирует ультрафиолет, который, в свою очередь, заставляет светиться люминофор), поэтому световая отдача и срок службы КЛЛ имеют те же колоссальные преимущества перед лампами накаливания, что и ЛЛ.
Если исходить из названия, то может показаться, что речь идёт лишь об изменении размеров, но это не так. Компактные люминесцентные лампы (КЛЛ) или как их иногда называют «энергосберегающие» лампы явились результатом тщательного анализа работы ЛЛ и постепенного усовершенствования всех технико-экономических характеристик своих предшественниц, что привело к устранению типичных недостатков ЛН и ЛЛ при одновременном сохранении и развитии их достоинств.
Прежде всего, специалистам удалось уменьшить размеры ламп. Новые технологические возможности, появившиеся в последней четверти XX века, позволили уменьшить диаметр трубки до 7 мм, и, изогнув её дважды или трижды, получить компактную люминесцентную лампу (четырёхканальная КЛЛ мощностью 18 Вт имеет длину всего 145 мм, то есть в 10 раз меньше, чем традиционная ЛЛ).
Уменьшение габаритов позволило сократить применение ртути более чем в 10 раз (до 2 — 3 мг), а в амальгамных КЛЛ ртути в чистом виде нет вообще, она находится в связанном состоянии. Пожаро- и взрывобезопасность, а также защита от поражения потребителя электрическим током возросли на порядок, кроме того, качественные КЛЛ от ведуших производителей, как правило, имеют защиту от перегрузок по току, защиту при повреждении излучающего блока, травмобезопасные неизвлекаемые цоколи и ряд других усовершенствований, направленных на обеспечение безопасности эксплуатации ламп.
Уменьшение габаритов КЛЛ позволило применять их как в отдельной осветительной установке, так и для прямой замены ЛН в светильниках со стандартными патронами, рассчитанными на использование резьбового «эдисоновского» цоколя.
В силу своих конструктивных особенностей КЛЛ имеют ещё одно преимущество: диапазон их цветовой температуры необычайно широк (2700 — 6000К), что даёт возможность создавать свет самого разного спектрального состава (тёплый, естественный, белый, дневной).
Подавляющее большинство КЛЛ оснащены электронным пускорегулирующим аппаратом (ЭПРА), которые используются вместо стартеров, электромагнитных дросселей и конденсаторов. ЭПРА значительно энергоэкономичней, чем традиционные электромагнитные ПРА, так как потери мощности в балласте не происходит, кроме того, ЭПРА гарантируют практически мгновенное включение лампы.
В отличие от ЛЛ, имеющих традиционные ПРА, КЛЛ с ЭПРА не имеют оптических (пульсация светового потока) и акустических (шум) эффектов, что делает их относительно безвредными для человеческого зрения и позволяет применять их в любых помещениях.
Если сравнить КЛЛ с лампой накаливания одной и той же яркости, то окажется, что расходы на электроэнергию при использовании КЛЛ сокращаются на 80%. Световая отдача КЛЛ находится на уровне 40 — 80 лм/Вт, повышаясь с увеличением мощности и ухудшением качества цветопередачи. По заявлениям производителей КЛЛ, лампы накаливания мощностью 25, 40, 60, 75 и 100 Вт можно заменить компактными люминесцентными лампами (не снижая уровень освещённости) мощностью 5, 7, 11, 15, 20 Вт.
Но, несмотря на все указанные достоинства КЛЛ необходимо упомянуть об одном деликатном обстоятельстве, о котором производители и продавцы предпочитают молчать. Дело в том, что по истечении срока службы лампу, как правило, выбрасывают вместе с бытовыми отходами, не задумываясь о последствиях. Хотя в лампе содержится незначительное количество ртути, и эта доза не нанесёт вам много вреда, но если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме, нанося вред здоровью. К сожалению, в отличие от европейских стран, у нас проблема утилизации ЛЛ, используемых населением, не решается.
Источник
Современные источники света
Основными показателями, характеризующими источники света являются светоотдача и цветопередача.
Светоотдача — это относительная величина, выражающая величину светового потока в люменах (лм), получаемого при преобразовании одного ватта (Вт) потребленной электроэнергии — лм/Вт. Она является основным показателем, характеризующим экономичность источников света. Светоотдачу не следует путать с собственно световым потоком, яркостью, освещенностью — эти величины показывают отношение светового потока к излучающей, и, соответственно, освещаемой поверхности, и, поэтому, экономичность источников света они не характеризуют. Поэтому, например, если продавец перед вами включает две разных лампочки, предлагая вам самим убедиться, какая ярче, не стоит отдавать предпочтение той, которая сильнее ослепляет — не факт, что у нее выше светоотдача, следовательно, «экономичность».
Цветопередача — это показатель качества света, его способность передавать цвета освещаемых предметов без искажений. Для ее оценки разработаны различные шкалы, наиболее распространенной из которых является Ra8. Оценка цветопередачи производится по восьми эталонным карточкам или прямоугольникам, напечатанным в световых атласах.
Однако, следует учесть, что выбранные цвета и способы смешения красок для их получения, отнюдь не отображают все встречающиеся цвета и оттенки — спектры отражения окружающих предметов, а только лишь самые распространенные.
Поэтому, многие современные люминесцентные лампы с полосатыми спектрами излучения, оцениваемые высоко по этой шкале (80-90 единиц), на самом деле не передают многих оттенков, видимых при естественном дневном освещении — обладающим непрерывным спектром. Однако, среди газоразрядных источников света есть такие, спектр которых очень близок к солнечному — это ксеноновые лампы сверхвысокого давления, применяемыми в кинопроекторах и специальные металлогалогенные лампы сверхвысокого давления типа ДРИШ и их зарубежных аналогов.
Цветовая температура — величина, характеризующая цветность света. Она численно равняется температуре абсолютно черного тела (физическая идеализация, условное тело, полностью поглощающее весь падающий на него световой поток) при котором оно излучает свет данной цветности. С увеличением температуры, цвет меняется от красного в сторону белого, и, наконец, синего — по цвету длине наиболее интенсивно излучаемых волн.
Рассмотрим основные типы источников света, пришедших на замену лампам накаливания.
Галогенные лампы являются усовершенствованными лампами накаливания, в которых металл нити накала образует химические соединения с веществами, содержащимися в наполнении колбы — йодом, бромом, которые, при правильно подобранной температуре компактной колбы, не оседают на ней, а возвращается конвекционными потоками обратно к спирали, где на ее поверхности вновь высвобождается чистый металл. Таким образом, снижается расход металла на испарение, что позволяет нити накаливания работать при более высокой, чем у обычных ламп накаливания, температуре, от которой зависит светоотдача и цветовая температура света, а также увеличивается срок службы. светоотдача таких ламп составляет 17-24 лм/Вт, цветовая температура 2900-3000 K («теплый» свет), цветопередача Ra 99 срок службы 2-8 тыс. ч.
Более экономичными являются низковольтные галогенные лампы. Это объясняется тем, что у них, при равной мощность, нить короче и толще, что позволяет ей работать при повышенной температуре, и снижает риск перегорания, отчего и срок службы таких ламп всегда выше. Однако такие лампы требуют понижающих электронных трансформаторов. Галогенные лампы, рассчитанные на сетевое напряжения, однако, более удобны, поскольку не требуют трансформаторов и изготавливаются с внешней колбой и цоколем E27, позволяющим использовать их в обычных светильниках вместо ламп накаливания.
Линейные люминесцентные лампы. основаны на свечении люминофора, возбуждаемого ультрафиолетовым излучением разряда в парах ртути низкого давления. Светоотдача колеблется в пределах 70-104 лм/Вт, цветовая температура — 2700-6500 K (есть аквариумные лампы с цветовой температурой до 13000 K), цветопередача Ra 65-95, срок службы — 10-45 тыс. ч. Наиболее предпочтительными во всех отношениях, в том числе цены, для внутреннего освещения считаются лампы с трехполосным люминофором, излучающим спектр из трех длин волн, соответствующих максимальной чувствительности колбочек сетчатки — красный, зеленый и синий, белое свечение с различными оттенками достигается смешением этих лучей. а также света, излучаемого разрядом. Однако, как уже говорилось выше, данная система оценки цветопередачи не является полностью объективной, и такие лампы плохо передают небольшую разницу между оттенками, потому для освещения помещений печатной промышленности, художественных студий и тп., где требуется очень высокая степень цветоразличения. применяют лампы с пятиполосным люминофором и цветопередачей свыше 90. Кроме того, обычные старые лампы на галофосфатном люминофоре (типа ЛБ, ЛТБ и ЛД), на определенных участках спектра — в желто-зеленой области, даже выигрывают по передаче оттенков, однако они плохо передают красные и синие цвета, и обладают низкой светоотдачей, из-за чего, на данный момент, сняты с производства. Предпочтительнее использовать такие лампы в светильниках с электронными пускорегулирующими аппаратами (ЭПРА), которые обеспечивают большую частоту и стабильность электрических параметров, а также большую светоотдачу и срок службы ламп.
Компактно-люминесцентные лампы с резьбовыми цоколями E14 и E27 действуют по принципу, сходному с люминесцентными лампами. Будучи созданными для прямой замены ламп накаливания, они, однако обладают рядом недостатков: более низкая светоотдача — из-за меньшей, при равных мощностях, длины разрядных трубок, а также из-за значительных потерь при поглощении света в полости развитой поверхности трубок; меньший срок службы, в основном из-за более примитивного устройства ПРА, не обеспечивающего прогрева спиралей, а также часто выходящего из строя прежде разрядной трубки.
Светоотдача ламп составляет 50-75 лм/Вт, срок службы — 8-20 тыс. ч., цветовая температура — 2500-6400 лм/Вт, цветопередача Ra 80-85, выпускаются только с трехполосным люминофором.
Светодиодные лампы и светильники. Действие их основано на свечении кристаллов и люминофора, возбуждаемого частью видимого излучения кристалла (синего). Вопреки заявлениям многих производителей и продавцов, эти источники света, даже от самых известных производителей обладают пока весьма скромными характеристиками — светоотдача 50-80 лм/Вт, цветопередача Ra 60-80, цветовая температура — 3000-6000 K но технологии в этом направлении на данный момент развиваются. Спектр светодиодов в чем-то подобен спектру галофосфатных люминесцентных ламп — он состоит из из узкой синей полосы длиной волны ок. 450 нм и участка непрерывного спектра неравномерной интенсивности в зелено-оранжевой области. В не зависимости от цветовой температуры, светодиоды плохо передают красных цвет. Кроме того, синяя линия совпадают с пиком чувствительности мелатониновых рецепторов, отвечающих за состояние сна и бодрствования, что может приводить к переутомлению. Кроме того, синие лучи данного диапазона вызывают деградацию рецепторов синего света. Учитывая эти факторы, предпочтительнее выбирать светодиодные лампы с низкой цветовой температурой, в излучении которых, синий свет кристалла составляет меньшую часть.
Металлогалогенные лампы. Являются газоразрядными лампами высокого давления (не путать с галогенными лампами), в которых преобладающим является излучение ионов металлов, особенно редкоземельных, образующихся в ртутном разряде при температуре 900-1000 °C из добавок йодистых и бромистых солей. Обладают довольно широким диапазоном цветностей, в зависимости от добавок. Лампы, предназначенные для общего освещения, содержат, как правило соли редкоземельных элементов и дают почти непрерывный спектр. По материалу разрядной трубки (горелки) делятся на кварцевые и керамические. последние, из-за большей прочности, работают при более высоких давлениях, и обладают более высокой светоотдачей — до 130 лм/Вт. Цветовая температура — 2800-6000 K (существуют лампы и с более высокой цветовой температурой). Наибольшей цветопередачей. среди ламп высокого давление (существуют и короткодуговые лампы сверхвысокого давления) обладают лампы с керамической горелкой с цветовой температурой 5000-5500 K — их спектр по форме напоминает солнечный.
Основным недостатком этих ламп является долгий период разгорания и невозможность мгновенного включения после предшествующего выключения, значительный спад светового потока в течении службы, повышение потребления электроэнергии, нестабильность цветовых характеристик их значительная цена и недостаточные ассортимент светильников, предназначенных для них. Также запрещается использовать их без плафона, из-за большой яркости светящегося тела.
Заключение.
Выбор источников света чаще всего зависит от экономичности, цветовой температуры и цветопередачи, однако не всегда каждый из этих факторов имеет одинаковое значение для потребителя. Не во всех случаях требуется идеальная цветопередача, а экономичностью можно пожертвовать в пользу низкой цены и эстетических требований к светильнику, ограничением которых часто бывают габариты и форма ламп. Цветовая температура может зависеть от личных предпочтений и, что немаловажно, от оформления интерьера. поэтому выбор оптимального источника света — это личное дело покупателя, в котором мы советуем рукодствовать нашими рекомендациями.
Источник