Мода это преломление света

Мода это преломление света

Оптические волокна классифицируются в соответствии с числом лучей света, которые волокно способно проводить одновременно. Это называется рабочей модой волокна Следовательно, мода — это просто луч света. Чем выше рабочая мода волокна, тем больше лучей света могут проходить через сердечник. Волокно может содержать несколько тысяч лучей одновременно или же лишь один луч.

В следующем разделе обсуждаются различные моды оптических волокон и эффекты модовой дисперсии.

3.4.2. Модовая дисперсия

Важно для начала рассмотреть природу и свойства модовой передачи. У волокна с большое апертурой и/или диаметром будет большое число мод (лучей света), распространяющихся на протяжении этого волокна. Ненаправленный источник света (то есть такой, который одинаков излучает лучи во всех направлениях) вроде светодиода в одном импульсе излучает несколько тысяч световых лучей. Поскольку источник света вводит в сердечник пучок света с больше, углом, каждая мода света, распространяющаяся вдоль волокна с отличающимся углом, пройдет различное расстояние. Следовательно, время прохождения волокна от начала до конца будет для различных лучей разным. Световой передатчик вводит в волокно все моды одновременно, сигнал в начале волокна выглядит в виде короткого острого импульса. К тому времени, когда сигнал достигнет конца волокна, он растянется и будет выглядеть как удлиненный импульс. Это явление называется «модовой дисперсией» (рис. 3.13).

Читайте также:  Современный интерьер гостиной с биокамином

Рис. 3.13. Эффект дисперсии импульса вследствие многомодового распространения

Иллюстрация к межмодовой дисперсии на странице → Многомодовое оптоволокно

Луч света, распространяющийся вдоль центральной оси волокна, называется «основное: модой» (fundamental mode) и является модой с самым низким возможным порядком. Световые лучи, проходящие меньшие расстояния вдоль волокна, являются модами более низкого порядка а лучи, проходящие вдоль волокна большие расстояния, — модами более высокого порядка.

Если входные импульсы расположены близко друг к другу, выходные импульсы начнут перекрываться друг с другом, вызывая в приемнике интерференцию различных символов. Эта ситуация затрудняет различение импульсов приемником и создает ошибки данных. Это главный фактор, ограничивающий скорости передачи в многомодовых типах волоконно-оптических кабелей (рис. 3.14).

Рис. 3.14. Межсимвольная интерференция вследствие модовой дисперсии

Из этой диаграммы можно видеть, что приемнику будет трудно различить выходные импульсы, когда они на выходе из сердечника волокна перекроют друг друга (межсимвольная интерференция).

Модовая дисперсия измеряется в наносекундах и вычисляется по следующей формуле:

где D — общая дисперсия импульса; D0 — длительность импульса на выходе из волокна в наносекундах; Di — длительность импульса на входе в волокно в наносекундах.

Модовая дисперсия возрастает с увеличением числовой апертуры, следовательно, полоса пропускания волокна снижается с увеличением апертуры. То же правило применимо к увеличению диаметра волокна. Это показано на графике на рис. 3.15.

Поставщики кабелей указывают в технических характеристиках кабеля величину дисперсии. В качестве единиц измерения используется время удлинения импульса в пикосекундах (или наносекундах) на километр волокна (пс/км). Обычно поставщик не указывает эту цифру непосредственно, но ее легко вычислить по полосе пропускания. Например, полоса пропускания 400 МГц/км представляет максимальную модовую дисперсию, которую вы можете ожидать от волокна, 1/400 МГц/км, что равно 2,5 нс/км.

В разделе 8.3.2 описаны методики вычисления результатов модовой дисперсии в системе.

Источник

1.2 СВОЙСТВА СВЕТОВОДА, ОСНОВАННЫЕ НА ЗАКОНАХ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ

1.2.1 Виды световодов

Световод – это устройство, ограничивающее область распространения оптических колебаний и направляющее поток световой энергии в заданном направлении.
Различают два вида световодов: плоские и волоконные (рисунок 1.1, 1.2)

а – плёночного; б – канального а – однослойного; б – двухслойного; в – трёхслойного
Рисунок 1.1 – Конструкции плоских световодов Рисунок 1.2 – Конструкции волоконных световодов

Плоские (планарные) световоды в свою очередь подразделяют на плёночные (рисунок 1.1,а) и канальные (рисунок 1.1,б).

Волоконный световод (ВС) – это направляющая система, выполненная в виде тонкого стеклянного волокна цилиндрической формы, состоящая из сердцевины и оболочки, по которой осуществляется передача световых волн.

Волоконные световоды бывают однослойные (рисунок 1.2,а), двухслойные (рисунок 1.2,б) и трёхслойные (рисунок 1.2,в) и т.д. Показатель преломления материала сердцевины n1= &#8730&#9491, а оболочки – n2= &#8730&#9492, где &#9491 и &#9492 – относительные диэлектрические проницаемости. Относительная магнитная проницаемость материала &#956 обычно постоянна и равна единице. Показатель преломления вакуума n0 равен единице.

Типичный волоконный световод представляет собой длинную нить диаметром от 100 до 1000мкм в зависимости от применений, состоящую из цилиндрической сердцевины, окружённой одной или несколькими оболочками из материалов с меньшими показателями преломления. Показатель преломления оболочки постоянен, а сердцевины в общем случае является функцией поперечной координаты (например, радиуса в случае круглого световода). Эту функцию называют профилем показателя преломления (ППП).

Отрезки световодов используют для построения оптических устройств как активных (генераторов, модуляторов, демодуляторов и т.п.), так и пассивных (ответвителей, мостов, соединителей и т.п.).

1.2.2 Принцип действия волоконного световода. Типы лучей. Моды

Для передачи электромагнитной энергии по световоду используется известное явление полного внутреннего отражения на границе раздела двух диэлектрических сред, поэтому, как будет показано ниже, необходимо, чтобы n1>n2. Разность показателей преломления на границе «сердцевина – оболочка» обычно составляет 1–0,1%. Кроме того, оболочка защищает распространяющийся по сердцевине свет от любых внешних воздействий и помех.

В зависимости от величины угла &#952, который образуют с осью лучи, выходящие из точечного источника в центре торца световода (рисунок 1.3), возникают лучи излучения 1, лучи оболочки 2 и лучи сердцевины 3.


Рисунок 1.3 – Принцип действия волоконного световода

Типы лучей. В сердцевине существуют два типа лучей: меридиональные, которые пересекаются в некоторой точке с осью световода и косые, которые с осью световода не пересекаются. На рисунке 1.3 показаны меридиональные лучи.

Лучи, траектории которых полностью лежат в оптически более плотной среде, называются направляемыми. Поскольку энергия в направляемых лучах не рассеивается наружу, такие лучи могут распространяться на большие расстояния.

Моды. Световые волны, которые образуются направляемыми лучами, многократно отражаясь от границы «сердцевина – оболочка», накладываются сами на себя и образуют направляемые волны (моды). Для облегчения восприятия под модой достаточно понимать вид траектории, вдоль которой распространяется свет.

1.2.3 Типы волокна

Оптическое волокно – это сочетание стеклянного волокна с защитным покрытием, являющимся конструктивным элементом. Термин используется обычно при рассмотрении конструктивных и технологических особенностей волоконно оптических кабелей.

Термины «оптическое волокно» и «волоконный световод» являются синонимами. Последний обычно применяется при рассмотрении вопросов передачи информации с помощью законов оптики.

Волокно, в котором распространяется несколько мод, называется многомодовым (ММ). В ММ волокне диаметр сердцевины больше длины волны (dc>>&#955). Волокно, в котором распространяется одна мода называется одномодовым (ОМ). В ОМ волокне диаметр сердцевины соизмерим с длиной волны (dc&#8776&#955). По существующему международному стандарту для средств связи принято, что диаметр оболочки волокна должен быть равен 125 мкм. Оболочка изготавливается из кварцевого стекла (SiO2) с n2=1,45, а сердцевина – из кварцевого стекла с добавками GeO2 или P2O5. Для промышленно выпускаемых световодов ОМ волокно имеет диаметр сердцевины 7–10мкм, а ММ волокно – 50–65,5мкм.
Существует три основных типа волокон: ступенчатое ММ, градиентное ММ и ступенчатое ОМ волокно (рисунок 1.4).


Рисунок 1.4 – Поперечное сечение и ППП ступенчатого многомодового (а), градиентного многомодового (б) и ступенчатого одномодового (в) волокна

Принцип передачи электромагнитной энергии по ступенчатому многомодовому, градиентному многомодовому и ступенчатому одномодовому волокну представлен на рисунке 1.5.


Рисунок 1.5 – Лучевой принцип распространения электромагнитной энергии по ступенчатому многомодовому (а), градиентному многомодовому (б) и ступенчатому одномодовому (в) волокну

Лучи света входят в сердцевину волокна с торца и удерживаются за счёт полного внутреннего отражения внутри сердцевины (рисунок 1.5,а), или изгибаются в направлении градиента показателя преломления (рисунок 1.5, б).

1.2.4. Геометрические параметры световода

Формальные выкладки удобнее производить для ступенчатого световода, в котором показатель преломления сердцевины является постоянной величиной (n1=const). На рисунке 1.6 показан ход лучей в таком световоде.


Рисунок 1.6 – Ход лучей в волоконном световоде со ступенчатым профилем показателя преломления

n1sin&#9521=n2sin&#9522, (1.2)

где
n1 – показатель преломления среды 1;
&#9521 – угол падения;
n2 – показатель преломления среды 2;
&#9522– угол преломления.
Рассмотрим три случая:
а) Так как сердцевина является оптически более плотной средой по отношению к оболочке (n1>n2), то существует критический угол падения &#9521=&#952kp – внутренний угол падения на границу, при котором преломлённый луч (луч1) идёт вдоль границы сред (&#9522=90 o ).
Из закона Снеллиуса легко найти этот критический угол падения:

n1sin&#952kp=n2,
&#952kp
=arcsin(n2/n1).
(1.3)
n0sin&#952A=n1sin(90 o -&#952kp)=n1cos&#952kp. (1.4)

Воспользуемся выражением n1sin&#952kp=n2 и выразим sin&#952A через показатель преломления сердцевины и оболочки, полагая n0=1:

n1sin&#952kp=n2, cos 2 &#952kp=1-sin 2 &#952kp=(n1 2 -n2 2 )/n1 2 ,
sin&#952A=n1cos&#952kp=&#8730(n1 2 -n2 2 ).

Чем больше угол &#952A , тем большая часть падающего на торец световода света может быть введена в световод и будет в нём распространяться за счёт полного внутреннего отражения.
Величину

NA=sin&#952A (n0=1) (1.5)

называют числовой апертурой (NA — numerical aperture) световода (по аналогии с термином, используемым в оптике для определения способности микрообъективов собирать свет).
Числовая апертура – характеристика предельного угла &#952, при котором входящие в ВС лучи испытывают полное внутренне отражение и ещё сохраняют возможность распространяться по сердцевине волокна.
Отметим, что NA является безразмерной величиной.
Для ВС со ступенчатым профилем показателя преломления (ППП) числовая апертура обычно равна 0,18–0,23, а с градиентным – 0,13–0,18.
Фирмы-изготовители волокна указывают соответствующее значение числовой апертуры. Для волокна со ступенчатым ППП, как получено выше, значение числовой апертуры, выражается через показатели преломления:

NA=&#8730(n1 2 -n2 2 ). (1.6)

Для градиентного волокна используется понятие локальной числовой апертуры

NA(r)=&#8730(n1 2 (r)-n2 2 ). (1.7)

значение которой максимально на оси и падает до 0 на границе сердцевины и оболочки. Для градиентного волокна с параболическим ППП используется понятие эффективной числовой апертуры:

NAэфф=[&#8730(n1 2 (0)-n2 2 )]/&#8730 2. (1.8)

где n1(0) – максимальное значение показателя преломления.

Нормированная частота. частотойОказывается целесообразным ввести нормированную частоту &#957, которая объединяет структурные параметры ВС и длину волны излучения:

Источник

Явление преломления света — это . Закон преломления света

Явление преломления света – это физическое явление, которое происходит каждый раз, когда волна перемещается из одного материала в другой, в котором ее скорость распространения изменяется. Визуально оно проявляется в том, что изменяется направление распространения волны.

Физика: преломление света

Если падающий луч попадает на раздел между двумя средами под углом 90°, то ничего не происходит, он продолжает свое движение в том же направлении под прямым углом к границе раздела. Если угол падения луча отличается от 90°, происходит явление преломления света. Это, например, производит такие странные эффекты, как кажущийся излом объекта, частично погруженного в воду или миражи, наблюдаемые в горячей песчаной пустыне.

История открытия

В первом столетии н. э. древнегреческий географ и астроном Птолемей попытался математически объяснить величину рефракции, но предложенный им закон позже оказался ненадежным. В XVII в. голландский математик Виллеброрд Снелл разработал закон, который определял величину, связанную с отношением падающего и преломленного углов, которая впоследствии была названа показателем рефракции вещества. По сути, чем больше вещество способно преломлять свет, тем больше этот показатель. Карандаш в воде «сломан», потому что лучи, идущие от него, изменяют свой путь на границе раздела воздух-вода прежде, чем достигают глаз. К разочарованию Снелла, ему так и не удалось обнаружить причину этого эффекта.

В 1678 году еще один голландский ученый Христиан Гюйгенс разработал математическую зависимость, объясняющую наблюдения Снеллиуса и предположил, что явление преломления света – это результат разной скорости, с которой луч проходит через две среды. Гюйгенс определил, что отношение углов прохождения света через два материала с разными показателями рефракции должно быть равным отношению его скоростей в каждом материале. Таким образом, он постулировал, что через среды, имеющие больший коэффициент преломления, свет движется медленнее. Иначе говоря, скорость света через материал обратно пропорциональна его показателю преломления. Хотя впоследствии закон был экспериментально подтвержден, для многих исследователей того времени это не было очевидным, т. к. отсутствовали надежные средства измерения скорости света. Ученым казалось, что его скорость не зависит от материала. Лишь через 150 лет после смерти Гюйгенса скорость света была измерена с достаточной точностью, доказывающей его правоту.

Абсолютный показатель рефракции

Абсолютный показатель преломления n прозрачного вещества или материала определяется как относительная скорость, при которой свет проходит через него относительно скорости в вакууме: n=c/v, где с – скорость света в вакууме, а v – в материале.

Очевидно, что преломление света в вакууме, лишенном любого вещества, отсутствует, и в нем абсолютный показатель равен 1. Для других прозрачных материалов это значение больше 1. Для расчета показателей неизвестных материалов может использоваться преломление света в воздухе (1,0003).

Законы Снеллиуса

Введем некоторые определения:

  • падающий луч – луч, который приближается к разделению сред;
  • точка падения – точка разделения, в которую он попадает;
  • преломленный луч покидает разделение сред;
  • нормаль – линия, проведенная перпендикулярно к разделению в точке падения;
  • угол падения – угол между нормалью и падающим лучом;
  • определить угол преломления света можно как угол между преломленным лучом и нормалью.

Согласно законам рефракции:

  1. Падающий, преломленный луч и нормаль находятся в одной плоскости.
  2. Отношение синусов углов падения и рефракции равно отношению коэффициентов рефракции второй и первой среды: sin i/sin r = nr/ni.

Закон преломления света (Снеллиуса) описывает взаимосвязь между углами двух волн и показателями рефракции двух сред. Когда волна переходит из менее рефракционной среды (например, воздуха) в более преломляющую (например, воду), ее скорость падает. Наоборот, когда свет переходит из воды в воздух, скорость увеличивается. Угол падения в первой среде по отношению к нормали и угол рефракции во второй будут отличаться пропорционально разнице в показателях преломления между этими двумя веществами. Если волна переходит из среды с низким коэффициентом в среду с более высоким, то она изгибается в направлении к нормали. А если наоборот, то она удаляется.

Относительный показатель рефракции

Закон преломления света показывает, что отношение синусов падающего и преломленного углов равно константе, которая представляет собой отношение скоростей света в обеих средах.

Отношение nr/ni называется относительным коэффициентом преломления для данных веществ.

Ряд явлений, которые являются результатом рефракции, часто наблюдаются в повседневной жизни. Эффект «сломанного» карандаша – одно из самых распространенных. Глаза и мозг следуют за лучами обратно в воду, как будто они не преломляются, а приходят от объекта по прямой линии, создавая виртуальный образ, который появляется на меньшей глубине.

Дисперсия

Тщательные измерения показывают, что на преломление света длина волны излучения или его цвет оказывают большое влияние. Другими словами, вещество имеет много показателей преломления, которые могут различаться при изменении цвета или длины волны.

Такое изменение имеет место во всех прозрачных средах и носит название дисперсии. Степень дисперсии конкретного материала зависит от того, насколько показатель рефракции изменяется с длиной волны. С ростом длины волны становится менее выраженным явление преломления света. Это подтверждается тем, что фиолетовый рефрагирует больше красного, так как его длина волны короче. Благодаря дисперсии в обычном стекле происходит известное расщепление света на его составляющие.

Разложение света

В конце XVII века сэр Исаак Ньютон провел серию экспериментов, которые привели к его открытию видимого спектра, и показал, что белый свет состоит из упорядоченного массива цветов, начиная от фиолетового через синий, зеленый, желтый, оранжевый и заканчивая красным. Работая в затемненной комнате, Ньютон помещал стеклянную призму в узкий луч, проникавший через отверстие в оконных ставнях. При прохождении через призму происходило преломление света – стекло проецировало его на экран в виде упорядоченного спектра.

Ньютон пришел к выводу о том, что белый свет состоит из смеси разных цветов, а также, что призма «разбрасывает» белый свет, преломляя каждый цвет под другим углом. Ньютон не смог разделить цвета, пропуская их через вторую призму. Но когда он поставил вторую призму очень близко к первой таким образом, что все диспергированные цвета вошли во вторую призму, ученый установил, что цвета рекомбинируют, снова образуя белый свет. Этот открытие убедительно доказало спектральный состав света, который может быть легко разделен и соединен.

Явление дисперсии играет ключевую роль в большом числе разнообразных явлений. Радуга возникает в результате преломления света в каплях дождя, производя впечатляющее зрелище спектрального разложения, подобное тому, которое происходит в призме.

Критический угол и полное внутреннее отражение

При прохождении через среду с более высоким показателем рефракции в среду с более низким путь движения волн определяется углом падения относительно разделения двух материалов. Если угол падения превышает определенное значение (зависящее от показателя рефракции двух материалов), он достигает точки, когда свет не преломляется в среду с более низким показателем.

Критический (или предельный) угол определяется как угол падения, результирующий в угол рефракции, равный 90°. Другими словами, пока угол падения меньше критического, рефракция происходит, а когда он равен ему, то преломленный луч проходит вдоль места разделения двух материалов. Если угол падения превышает критический, то свет отражается обратно. Явление это носит название полного внутреннего отражения. Примеры его использования – алмазы и оптические волокна. Огранка алмаза способствует полному внутреннему отражению. Большинство лучей, входящих сквозь верхнюю часть бриллианта, будет отражаться, пока они не достигнут верхней поверхности. Именно это дает бриллиантам их яркий блеск. Оптическое волокно представляет собой стеклянные «волосы», настолько тонкие, что когда свет входит в один конец, он не может выйти наружу. И только когда луч достигнет другого конца, он сможет покинуть волокно.

Понимать и управлять

Оптические приборы, начиная от микроскопов и телескопов до фотокамер, видеопроекторов, и даже человеческий глаз полагаются на тот факт, что свет может быть сфокусирован, преломлен и отражен.

Рефракция производит широкий спектр явлений, в том числе миражи, радуги, оптические иллюзии. Из-за преломления толстостенная кружка пива кажется более полной, а солнце садится на несколько минут позже, чем на самом деле. Миллионы людей используют силу рефракции, чтобы исправить дефекты зрения с помощью очков и контактных линз. Благодаря пониманию этих свойств света и управлению ими, мы можем увидеть детали, невидимые невооруженным глазом, независимо от того, находятся ли они на предметном стекле микроскопа или в далекой галактике.

Источник

Оцените статью
Поделиться с друзьями