Современные проекты исследования космоса

Современные проекты исследования космоса

Уже семь лет наши «Союзы» — единственное средство доставки космонавтов всех стран на Международную космическую станцию.

Планируется поддерживать работу Международной космической станции как минимум до 2024 года, дальнейшие планы будут еще обсуждаться. На МКС все больше развиваются коммерческие научные эксперименты. В частности, «3Д Биопринтинг Солюшенс» совместно с Роскосмосом планирует разработать и использовать здесь магнитный биопринтер, способный производить человеческие ткани и части органов. Часть из них можно напечатать и на земле — в 2016 году ученые заявили о «печати» щитовидной железы мыши. Но невесомость потенциально позволяет печатать органы, которые под действием гравитации просто сложились бы и слиплись, — например, сердце.

  • Доставка космонавтов на МКС — это не просто двухдневная «прогулка в космос». Все члены экипажа, включая представителей иностранных космических агентств, проходят тренировку по действиям в запланированных и нештатных ситуациях, например, при аварийной посадке в ненаселенной местности. Они также изучают оборудование российского сегмента станции, транспортных кораблей, оборудование и снаряжение, порядок действий в нештатных ситуациях.

    Работа, которую уже много лет ведут на МКС российские космонавты, совсем не похожа на простой «орбитальный извоз». Космонавты действуют в ситуациях, которые, если даже и случались ранее, повторяются на новом, более сложном уровне. Например, 6 февраля российские космонавты Александр Мисуркин и Антон Шкаплеров побили рекорд по длительности работы в открытом космосе в российском скафандре «Орлан». Они пробыли вне станции 8 часов 12 минут и заменили модуль системы связи, который был установлен еще при создании МКС и не предусматривал демонтажа, поэтому работа была непростой.

    Читайте также:  Современные проблемы дизайна одежды

    кооперация
    в космосе

    Российский космос ассоциируют с доставкой космонавтов на МКС. Но это лишь одна из длинного списка задач, которые выполняет Роскосмос и предприятия Госкорпорации, чтобы изучить Землю, окружающие небесные тела и сделать жизнь на Земле более комфортной. Российской космической отрасли предстоит заработать средства на новые космические программы, модернизировать ракеты и корабли, чтобы человечество могло оставить след на других планетах. Уже сейчас разрабатываются многоразовые ракеты, космические корабли нового поколения и автоматические станции, которые полетят в дальний космос.

    Развивающиеся страны, которые еще не готовы тратить средства на создание собственных космических средств, могут воспользоваться преимуществами спутниковой связи через российские каналы, а также услугами дистанционного зондирования земли (ДЗЗ). Регулярное наблюдение территорий позволяет учитывать природные запасы, улучшать состояние сельского хозяйства, своевременно показывать и предсказывать природные катастрофы. Благодаря Роскосмосу смогли приобщиться к космическим исследованиям и страны с развивающейся экономикой: Алжир, Бахрейн, Боливия, Египет, Индия, Иран, Колумбия, Коста-Рика, Кот-д’Ивуар, Куба, Непал, Пакистан, Судан, Эквадор и другие.

    Те государства, которые уже способны создать свои спутники, например, модные сейчас и относительно простые в исполнении кубсаты, могут воспользоваться услугами Роскосмоса по их выведению на орбиту. Преимущество российской корпорации — регулярность пусков, благодаря которой можно присоединиться к уже запланированной миссии и таким образом снизить стоимость запуска. Отправка спутников на низкую околоземную орбиту может осуществляться непосредственно с МКС во время выхода космонавтов в открытый космос.

    У России есть обязательства по участию в работе «Коспас-Сарсат», международной спутниковой системы поиска и спасения судов и самолетов, терпящих бедствие. При аварии судна или самолета, оснащенного специальным автоматическим буем, подается сигнал SOS, который принимается космическим аппаратом. Затем определяются координаты места бедствия и через спутник передаются в службы спасения, что позволяет их ретранслировать практически из любой точки Земли. Система, образованная в 1977 году СССР, США, Канадой и Францией, во многом полагалась и полагается на отечественную инфраструктуру, однако для улучшения позиционирования используются и навигационные группировки ГЛОНАСС и GPS.

    ГЛОНАСС — одна из крупнейших в мире систем спутниковой навигации.

    Исследования космоса — большая и важная работа, о которой любят рассказывать СМИ. Но пока главное, что делает человечество в космосе, — это исследование родной Земли и обеспечение связи и навигации. Занятие более тихое, но необходимое: так мы улучшаем жизнь на собственной планете, повышаем уровень жизни и безопасности каждого человека. ГЛОНАСС — одна из крупнейших в мире систем спутниковой навигации. Их прием на аппаратном уровне обеспечивается чипами большинства мобильных устройств. Система работает наряду с американской GPS, при этом ГЛОНАСС обеспечивает более точное позиционирование в северных широтах Земли, помогая улучшать логистику и инфраструктуру компаниям всего мира. А еще ГЛОНАСС работает с китайской системой Бейдоу, подписано соглашение о совместной деятельности.

    Исследования космоса – большая и важная работа, о которой любят рассказывать СМИ. Но пока главное, что делает человечество в космосе, – это исследование родной Земли и обеспечение связи и навигации.

    Советский Союз первым отправил и успешно посадил автоматические космические аппараты на Венеру, но большинство миссий к Марсу и его спутникам преследовали неудачи

    На марсоходе установлен комплекс научной аппаратуры, где также будет два российских прибора: ИСЕМ и АДРОН-МР. Главная цель исследований — непосредственное изучение поверхности и атмосферы Марса в окрестностях района посадки, поиск соединений и веществ, которые могут свидетельствовать о возможном существовании на планете жизни.

    Ученые продолжают искать следы существующей или существовавшей там жизни, изучают этапы формирования планеты. Schiaparelli, созданный европейскими коллегами Роскосмоса, не смог опуститься на Марс. В этой части миссию постигла неудача — Марс подтвердил свою неуступчивость исследователям. Но в 2020 году планируется вторая часть миссии «ЭкзоМарс». Роскосмос снова предоставит для запуска ракету-носитель «Протон-М» с разгонным блоком «Бриз-М», которая доставит к Марсу российскую посадочную платформу с европейским автоматическим марсоходом на борту. При разработке посадочной платформы задействован опыт, накопленный по итогам мягких посадок советских космических аппаратов на Венеру, Луну и Марс. Также в миссии будут использоваться российские компоненты для исследования параметров атмосферы и поверхности Красной планеты. После схода марсохода платформа начнёт работать как долгоживущая автономная научная станция.

    Научные задачи орбитального модуля TGO — регистрация малых составляющих марсианской атмосферы, в том числе метана, который может вырабатываться живыми существами. Еще он производит картирование распространенности водяного льда в верхнем слое грунта с высоким пространственным разрешением и стереосъёмку поверхности. На аппарате установлено два европейских и два российских прибора. В нашей стране созданы спектрометрический комплекс АЦС (ACS — Atmospheric Chemistry Suit, комплекс для изучения химии атмосферы) и нейтронный детектор высокого разрешения ФРЕНД (FREND, Fine-Resolution Epithermal Neutron Detector).

  • Следующим этапом совместного освоения космоса может стать лунная орбитальная станция DSG. Перемещение с орбиты Земли к окололунной орбите значительно меняет окружающие условия. Так, окололунная станция будет лишена воздействия магнитного поля Земли, которое защищает людей от космической радиации. Это требует продолжения работ по средствам защиты, которые ведутся в том числе и на МКС сегодня.

    Советский Союз первым отправил и успешно посадил автоматические космические аппараты на Венеру, но большинство миссий к Марсу и его спутникам преследовали неудачи. Объединив усилия с партнерами, Роскосмос вместе с Европейским космическим агентством (ЕКА) организовал миссию «ЭкзоМарс». Соглашение о проекте и исследовании других тел Солнечной системы стороны подписали весной 2013 года, а уже 14 марта 2016 года была запущена первая миссия «ЭкзоМарс-2016»: отечественная ракета «Протон-М» с разгонным блоком «Бриз-М» доставила к Красной планете орбитальный модуль Trace Gas Orbiter (TGO) для изучения атмосферы и поверхности Марса, а также посадочный модуль Schiaparelli для отработки технологий посадки.

    S7 Space планирует использовать плавучий космодром «Морской старт» для запусков с экватора, что позволяет вывести большую нагрузку при меньших расходах.

    Помимо традиционных коммерческих запусков планируется привлечь внебюджетные средства за счет создания совместно с партнерами с рынка венчурного фонда и реализации коммерческого проекта в области дистанционного зондирования Земли на базе проекта «Цифровая Земля», запущенного в 2017 году.

    Основная задача — постоянное наблюдение практически всей поверхности Земли с высоким разрешением менее 1 м и создание ее цифровой копии, для чего к 2025 году Роскосмос планирует также нарастить отечественную орбитальную группировку. В анализе изображения и реализации услуг на его основе могут принять участие те российские компании, которые традиционно сильны в обработке геоинформационных данных и создании приложений для конечных пользователей. Это позволит Роскосмосу и партнерам наращивать свою долю на рынке ДЗЗ в конкуренции с иностранными игроками. Объем рынка оценивается сейчас в 2 млрд долларов с кратным увеличением в ближайшие годы.

    В мае 2017 года президент РФ Владимир Путин указал на необходимость коммерциализации результатов космической деятельности. Это позиционируется как переход от советской системы к рыночным принципам. Но для роста прибыли нужны и изменения законодательных и административных условий.

    И сейчас уже идет плодотворное сотрудничество. В частности, с частной космической компанией «С7 Космические транспортные системы». После получения необходимых разрешений частная космическая компания с российскими корнями планирует использовать приобретенный ею плавучий космодром «Морской старт» для запусков с экватора, что позволяет вывести большую нагрузку при меньших расходах. Созданы и работают совместные компании с предприятиями Роскосмоса. Так, РКС создал СП с Airbus Defence and Space по производству электроники — «Синертек», Главкосмос — СП с частной компанией «Космотрас» — «Главкосмос Пусковые услуги» по запуску ракет-носителей «Союз», у Центра им. Хруничева есть дочерняя американская компания ILS, которая продвигает запуски тяжелых ракет «Протон-М» на мировом рынке, а НПО «Энергомаш» и Pratt & Whitney создали СП «РД АМРОСС» по продаже российских двигателей РД-180 на американском рынке.

    Новые возможности дает создание акционерного общества, например, из АО «Центр им. Хруничева». Компания производит самые мощные отечественные ракеты-носители «Протон» и разгонные блоки к ним, а также отвечает за разработку современной отечественной ракеты «Ангара». Недостаточно высокая экономическая эффективность привела к острой ситуации в конкуренции с западными компаниями, производящими частные коммерческие запуски.

    Переход в форму акционерного общества должен улучшить логистику, контроль над технологическими процессами и экономическими показателями предприятия и, как следствие, вернуть конкурентоспособность.

    Входящие в Роскосмос предприятия реформируются, у них меняется форма собственности на акционерные общества, что дает большую свободу в экономической деятельности, и как следствие — происходит постепенное улучшение показателей. Также госкорпорация отвечает за эксплуатацию космодромов Байконур и Восточный и привлечение внебюджетных средств на развитие отрасли. Планируется увеличить доходы от коммерческих пусков и нарастить выручку от них с 70,5 млрд до 180 млрд рублей к 2025 году.

    Госкорпорация «Роскосмос» работает в соответствии с законом Российской Федерации от 2015 года. Корпорации переданы функции государственного заказчика, а также единого координатора космической программы РФ. Ее задачи — трансформация отрасли и повышение эффективности предприятий: российскому космосу нужны новые технологии, новое видение развития и новые цели.

    Источник

    Самые интересные космические открытия в 2020 году

    В прошедшем году ученые не только делали новые открытия — в списке космических загадок тоже случилось пополнение: это странные радиокруги, исчезающие планеты, следы самого мощного межгалактического взрыва и даже непонятно как выжившая сверхновая.

    Самая «экстремальная» экзопланета

    В рядах экзопланет появилась новая — K2-141b. Это каменистая и раскаленная экзопланета. Да, как и на Земле, на ней есть океаны, которые испаряются, превращаясь в облака, а затем конденсируются и выпадают обратно на поверхность в виде дождя. Только в случае с K2-141b речь идет не о воде, а о камнях.

    В 2020 году астрономы смоделировали атмосферу и погоду K2-141b и получили весьма впечатляющую картину. Дневная сторона планеты нагревается до 3000 °C, превращая поверхность в огромный океан лавы глубиной 100 км. Камень фактически испаряется при такой температуре, создавая атмосферу, в основном состоящую из диоксида кремния. Сверхзвуковой ветер переносит двуокись кремния на ночную сторону планеты, где она охлаждается при температуре ниже –200 °C и выпадает в виде каменного дождя.

    Планета, которой никогда не существовало?

    Экзопланета Дагон (ранее Фомальгаут b) была обнаружена возле звезды Фомальгаут — одной из самых ярких звезд на ночном небе, расположенной всего в 25 световых годах от Земли. Экзопланету ученые обнаружили в 2008 году, и она была первой экзопланетой, обнаруженной напрямую, а не косвенными методами наподобие наблюдения за эффектами, которые проявляются у родительской звезды.

    Но в 2020 году астрономы попросту не нашли Фомальгаут b на небе. После анализа десятилетних наблюдений Хаббла оказалось — то, что было ярким пятном света в 2004 году, полностью исчезло уже к 2014 году. И обычно экзопланеты так себя не ведут.

    Поэтому новое исследование предложило логичное объяснение – Фомальгаут b никогда не существовала, во всяком случае, в виде планеты. Компьютерное моделирование показало, что это, скорее всего, было плотное пылевое облако, созданное в результате столкновения двух астероидов или комет, которые затем дрейфовали рядом друг с другом почти 10 лет.

    Бетельгейзе не планирует взрываться

    Еще в 2019 году Бетельгейзе начала тускнеть, чем озадачила астрономов. Второй эпизод потемнения звезды опять заставил ученых думать о взрыве, но все оказалось гораздо прозаичнее.

    Новое исследование выяснило, что такие эпизоды вызывают пульсации, а вовсе не готовность красного сверхгиганта к взрыву. Более того, оказалось, взрыва можно ждать еще примерно 100 тысяч лет, а сама звезда по размерам меньше, чем предполагалось, и находится ближе к Земле — на расстоянии в 530 световых лет. Правда, опасаться все равно не стоит — взрыв никак не отразится на нашей планете.

    Еще одна звезда со странной судьбой: в начале 2020 года астрономы обнаружили, что белый карлик под названием SDSS J1240 + 6710 стал сверхновой – и пережил взрыв, не разлетевшись по галактике. Хотя сверхновая обычно — финальный этап жизни звезд.

    Вероятно, дело в необычном составе звезды — в нем не было водорода или гелия, но зато присутствовали углерод, натрий и алюминий, которых обычно нет в белых карликах. Размер небесного тела — всего около 40% от массы Солнца. И сейчас оно проносится через галактику со скоростью 900 000 км/ч.

    Единственное объяснение, которое придумали ученые: звезда каким-то образом пережила частичную сверхновую, о чем говорит ее состав. Но пока окончательного вердикта астрономы так и не вынесли.

    Звезда превращается в планету из-за черной дыры

    Но, пожалуй, самая необычная судьба ждет звезду в галактике GSN 069. Примерно через триллион лет она может превратиться в планету, похожую на Юпитер, благодаря бесконечному сближению с черной дырой.

    Это выяснилось, когда астрономы заметили яркие рентгеновские всплески через каждые 9 часов — оказалось, что это звезда, вращающаяся по уникальной спирографической орбите вокруг черной дыры. Вспышки были вызваны веществом, которое выплескивалось с поверхности звезды каждый раз, когда она проносилась мимо черной дыры.

    За несколько миллионов лет звезда превратилась из красного гиганта в белого карлика. Если дать ей еще триллион лет, она остынет настолько, что превратится в планету.

    Следы самого мощного взрыва во Вселенной

    Как и галактические вулканы, черные дыры иногда вспыхивают и испускают мощные вспышки энергии, пробивая дыры в окружающем их газе. А в прошедшем году телескопы обнаружили один из самых больших «кратеров», когда-либо существовавших во Вселенной.

    Похоже, что сверхмассивная черная дыра в центре скопления галактик Змееносца в какой-то момент в далеком прошлом очень мощно «выстрелила» извержением — в обнаруженный кратер можно подряд поместить пятнадцать галактик Млечного Пути. Количество энергии, которое потребовалось, чтобы оставить такой межгалактический след, сложно даже представить — это было самое мощное извержение черной дыры во Вселенной.

    Пульсар с самым сильным магнитным полем

    В этом году внимание астрономов привлек еще один тип нейтронной звезды — она обладает самым сильным магнитным полем, которое когда-либо наблюдали во Вселенной.

    Ученые подсчитали, что магнитное поле этого пульсара достигает 1 млрд Тесла (Тл). Например, магнитное поле Солнца составляет около 0,4 Тл, среднего белого карлика — 100 Тл, а у Земли — и вовсе 30 мкТл.

    Новая космическая загадка — странные радиокруги

    Ученые не стали изобретать сложных названий для новой космической загадки — это странные радиокруги (odd radio circles, или ORC). Они представляют собой необъяснимые сгустки радиоизлучения, которые не соответствуют ни одному известному науке объекту или явлению.

    Несколько ORC были обнаружены на радиоизображениях в виде четких кругов, и они не испускают никаких оптических, инфракрасных или рентгеновских сигналов. Астрономы еще не могут сказать, насколько они далеко находятся от Земли и каковы их реальные размеры.

    Астрономы уже исключили вероятность, что это артефакты, остатки сверхновой и пылевые облака. Сейчас ORC кажутся новым астрономическим объектом, и теперь астрономы разгадывают эту загадку.

    Скоростные магистрали в Солнечной системе

    Ученые выяснили, что в Солнечной системе проходит самая настоящая скоростная «автострада» — извилистые туннели и каналы вокруг планет. По ним небесные тела наподобие комет и астероидов могут перемещаться по галактике гораздо быстрее обычного.

    Например, от Юпитера до Нептуна небесное тело может долететь меньше, чем за 10 лет, хотя без магистрали это занимает больше 100 тысяч лет. На практике это открытие означает, что, спроектировав космические корабли с учетом скоростных каналов, можно сэкономить на ракетном топливе и путешествовать не только на ближайшие к Земле планеты, но и в отдаленные уголки Солнечной системы.

    Источник

  • Оцените статью
    Поделиться с друзьями