История, современное состояние и перспективы развития вычислительной техники
Современные информационные технологии– это совокупность методов, производственных процессов и программно-технических средств, объединенных в технологическую цепочку, обеспечивающую сбор, регистрацию, обработку, накопление, хранение, отображение, поиск, анализ, защиту и распространение информации. В основе современных информационных технологий лежит вычислительная техника.
Вычислительная техника (ВТ) ‑ совокупность технических и математических средств, используемых для механизации и автоматизации математических вычислений и обработки информации. В своем развитии вычислительная техника прошла за сравнительно короткий срок достаточно большой путь от замысла до воплощения в реальные машины. В развитии вычислительной техники принято выделять ряд этапов:
— ручной (до XVII века) ;
— механический (с середины XVII века);
— электромеханический (с 90–х годов XIX века);
— электронный (с 40-х годов XX века).
Впервые счетные устройства, называемые абак, появились, вероятно, в Древнем Вавилоне 3 тыс. лет до н. э. Первоначально это устройство представляло собой доску, разграфлённую на полосы или со сделанными углублениями. Счётные метки (камешки, косточки) передвигались по линиям или углублениям. В 5 в. до н. э. в Египте вместо линий и углублений стали использовать палочки и проволоку с нанизанными камешками.
В 1623 году Вильгельм Шиккард придумал «Считающие часы» — первый механический калькулятор, умевший выполнять четыре арифметических действия. Считающими часами устройство было названо потому, что как и в настоящих часах работа механизма была основана на использовании звёздочек и шестерёнок.
В 1642 году Блезом Паскалем, французским учёным, в честь которого в наше время назван один из языков программирования, была сконструирована счётная машина, которая могла выполнять операции сложения и вычитания. Она представляла собой механическую конструкцию с шестерёнками и ручным приводом. Через тридцать лет, немецкий математик Готфрид Вильгельм Лейбниц построил другую механическую машину, которая помимо сложения и вычитания могла выполнять операции умножения и деления.
В 1822 году Чарльз Бэббидж, профессор математики Кембриджского Университета, разработал и сконструировал аналитическую машину, которая, как и машина Паскаля, могла лишь складывать и вычитать. Поскольку аналитическая машина программировалась на элементарном ассемблере, ей было необходимо программное обеспечение. Созданием программного обеспечения занималась Ада Лавлейс. Таким образом, Ада Лавлейс стала первым в мире программистом. В её честь назван современный язык программирования — Ada.
Работы по созданию отдельных элементов и узлов ЭВМ были начаты в 1937 г. в США Дж. Атанасовым. В 1942 г. им совместно с К. Берри была построена электронная машина ABC. Первая ЭВМ полностью на электрон ?? ных лампах была названа ENIAC.
В 1944 году немецкий инженер Конрад Цузе создал первую модель компьютера, которую сегодня многие считают первым реально действовавшим программируемым компьютером. В этом же году компьютер под названием «Mark I» разработал учёный из Гарварда — Говард Айкен. Его компьютер имел 72 слова по 23 десятичных разряда каждое и мог выполнить любую команду за 6 секунд. В устройствах ввода-вывода использовалась перфолента.
В 1947 году под руководством С.А. Лебедева были начаты работы по созданию малой электронной счетной машины (МЭСМ). Эта ЭВМ была запущена в эксплуатацию в 1951 году и стала первой ЭВМ в СССР и континентальной Европе.
Новые возможности по созданию вычислительной техники открылись с появлением электронных ламп и последующим бурным развитием электроники. Это новый период развития вычислительной техники делится на этапы, непосредственно связанные с уровнем развития элементной базы электронной техники, конструктивно-технологическим исполнением, логической организацией, математическим обеспечением, удобством общения человека с машиной. Смена поколений электронно-вычислительных машин (ЭВМ) происходила революционно, ? ей сопутствовало изменение технико-экономических показателей этих машин: быстродействие, надежность, потребляемая мощность, стоимость, габариты.
В настоящее время выделяют шесть этапов в развитии электронно-вычислительной техники, связанных с развитием элементной базы и промышленных технологий:
— ЭВМ на электронных лампах (1944–1956 гг.);
— ЭВМ на дискретных полупроводниковых и магнитных элементах (диоды, биполярные транзисторы, тороидальные ферритовые микротрансформаторы и ферромагнитные ячейки памяти) (1956–1964 гг.);
— ЭВМ на интегральных элементах малой плотности (1964–1971 гг.);
— ЭВМ на микропроцессорных элементах (1971–1990 гг.);
— ЭВМ на сверхбольших ИС и многопроцессорные системы (с 1990 по настоящее время);
— ЭВМ на новой элементной базе и новых принципах работы (настоящее и будущее).
Появлению первых ЭВМ предшествовали такие фундаментальные изобретения, как электронная лампа (1879), триод (1913). Триод, в отличие от двух электродной лампы, имеет еще один электрод – сетку. Благодаря наличию этого электрода появилась возможность управлять потоком электронов в лампе и создавать на их основе элементы памяти. Работы по созданию отдельных элементов и узлов ЭВМ были начаты в 1937 г. в США Дж. Атанасовым. В 1942 г. им совместно с К. Берри была построена электронная машина ABC. Первая ЭВМ полностью на электрон ?? ных лампах была названа ENIAC. Она была изобретена Эккертом и Маучли и создана в США в 1946 году.
На этапах с первого по третий большой вклад в развитие вычислительной техники внесли советские ученые: С. А. Лебедев, И. С. Брук. Под их руководством были созданы ЭВМ первого поколения МЭСМ – 1951 год (малая электронная счетная машина), БЭСМ – 1952–1953 гг. (большая электронная счетная машина). К машинам первого поколения можно отнести МЭСМ, БЭСМ, М-1, М-2, М-3, «Стрела», «Минск-1», «Урал-1», «Урал-2», «Урал-3»,М-20, «Сетунь», БЭСМ-2, «Раздан». ЭВМ «Сетунь» была построена в 1953 году Н. П. Бруснецовым.
В начале нового столетия наметился определенный сдвиг в разви-
тии собственной элементной базы. В России в середине 2001 года был введен в строй 768-процессорный суперкомпьютер МВС-1000М, обеспечивавший производительность в 1 Терафлоп. После этого Россия вышла на третье место в мире по мощности производимых суперкомпьютеров. В последующие годы совместными усилиями российских и белорусских ученых создан ряд СуперЭВМ серии СКИФ, входящих в первую сотню мирового рейтинга компьютеров по производительности. Самый мощный в России, СНГ и Восточной Европе суперкомпьютер «СКИФ МГУ» занимает 22-е место в миро-
вом рейтинге суперкомпьютеров TOP-500. Пиковая производительность суперкомпьютера «СКИФ МГУ» составляет 60 триллионов операций в секунду (60 Терафлоп).
ЭВМ пятого поколения не связаны с изменением элементной базы. В основу периодизации здесь для отличия их от ЭВМ четвертого поколения положены особенности архитектуры и организация вычислительного процесса. ЭВМ пятого поколения характеризуются наличием сверхсложных микропроцессоров с параллельновекторной структурой, а также СуперЭВМ, содержащих в своей структуре сотни параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные
сетевые компьютерные системы.
Современный этап развития ЭВМ можно охарактеризовать как этап развития машинного интеллекта. Вычислительные системы будущего будут ориентированы на обработку знаний и должны располагать развитыми возможностями логического вывода. Важнейшая черта их должна состоять в том, чтобы используемый интерфейс был непосредственно рассчитан на человека. Главными особенностями машин будущего будут речевой ввод-вывод информации и самообучаемость. Технический базис ее должна составить развивающаяся технология сверхбольших интегральных схем, создание памяти повышенного объема, возрастающие возможности высокоскоростных элементов.
Основу архитектуры должны составить системы с распределительными функциями, сетевая архитектура, машина базы данных, быстродействующая машина для численных расчетов, высокоуровневая система человеко-машинного общения. Основными системами программного обеспечения должны стать системы управления базами знаний, системы решения проблем и логического вывода, системы интеллектуального интерфейса.
Основными прикладными системами могут стать системы машинного перевода, вопросно-ответная система, прикладные системы понимания речи, изображений, рисунков, системы поддержки принятия решений.
Источник
Уровень современного развития вычислительной техники
Историю развития современных ЭВМ разделяют на 4 поколения. Но деление компьютерной техники на поколения — весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.
Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. Этот прогресс показан в данной таблице:
П О К О Л Е Н И Я Э В М
1972 — настоящее время
Количество ЭВМ в мире (шт.)
Быстродействие (операций в сек.)
Гибкий и лазерный диск
Все ЭВМ I-го поколения были сделаны на основе электронных ламп, что делало их ненадежными — лампы приходилось часто менять. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.
Притом для каждой машины использовался свой язык программирования. Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства, оперативные запоминающие устройства были реализованы на основе ртутных линий задержки электроннолучевых трубок.
Эти неудобства начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность её использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить её к требованиям, возникшим из опыта эксплуатации компьютеров.
В 1946 г. американские инженер-электронщик Дж. П. Эккерт и физик Дж. У. Моучли в Пенсильванском университете сконструировали, по заказу военного ведомства США, первую электронно-вычислительную машину — “Эниак” (Electronic Numerical Integrator and Computer), которая предназначалась для решения задач баллистики. Она работала в тысячу раз быстрее, чем «Марк-1», выполняя за одну секунду 300 умножений или 5000 сложений многоразрядных чисел. Размеры: 30 м. в длину, объём — 85 м 3 ., вес — 30 тонн. Использовалось около 20000 электронных ламп и 1500 реле. Мощность ее была до 150 кВт.
Первая машина с хранимой программой — ”Эдсак” — была создана в Кембриджском университете (Англия) в 1949 г. Она имела запоминающее устройство на 512 ртутных линиях задержки. Время выполнения сложения было 0,07 мс, умножения — 8,5 мс.
В 1948г. году академик Сергей Алексеевич Лебедев предложил проект первой на континенте Европы ЭВМ – Малой электронной счетно-решающей машины (МЭМС). В 1951г. МЭСМ официально вводится в эксплуатацию, на ней регулярно решаются вычислительные задачи. Машина оперировала с 20разрядными двоичными кодами с быстродействием 50 операций в секунду, имела оперативную память в 100 ячеек на электронных лампах.
В 1951 г. была создана машина “Юнивак”(UNIVAC) — первый серийный компьютер с хранимой программой. В этой машине впервые была использована магнитная лента для записи и хранения информации.
Вводится в эксплуатацию БЭСМ-2 (большая электронная счетная машина) с быстродействием около 10 тыс. операций в секунду над 39-разрядными двоичными числами. Оперативная память на электронно-акустических линиях задержки — 1024 слова, затем на электронно-лучевых трубках и позже на ферритовых сердечниках. ВЗУ состояло из двух магнитных барабанов и магнитной ленты емкостью свыше 100 тыс. слов.
В 1958 г. в ЭВМ были применены полупроводниковые транзисторы, изобретённые в 1948 г. Уильямом Шокли, они были более надёжны, долговечны, малы, могли выполнить значительно более сложные вычисления, обладали большой оперативной памятью. 1 транзистор способен был заменить
40 электронных ламп и работал с большей скоростью.
Во II-ом поколении компьютеров дискретные транзисторные логические элементы вытеснили электронные лампы. В качестве носителей информации использовались магнитные ленты («БЭСМ-6», «Минск-2″,»Урал-14») и магнитные сердечники, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски.
В качестве программного обеспечения стали использовать языки программирования высокого уровня, были написаны специальные трансляторы с этих языков на язык машинных команд. Для ускорения вычислений в этих машинах было реализовано некоторое перекрытие команд: последующая команда начинала выполняться до окончания предыдущей.
Появился широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы, управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.
Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.
В 1960 г. появились первые интегральные системы (ИС), которые получили широкое распространение в связи с малыми размерами, но громадными возможностями. ИС — это кремниевый кристалл, площадь которого примерно 10 мм 2 . 1 ИС способна заменить десятки тысяч транзисторов. 1 кристалл выполняет такую же работу, как и 30-ти тонный “Эниак”. А компьютер с использованием ИС достигает производительности в 10 млн. операций в секунду.
В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения.
Машины третьего поколения — это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.
Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.
Примеры машин третьего поколения — семейства IBM -360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.
(с 1972 г. по настоящее время)
Четвёртое поколение — это теперешнее поколение компьютерной техники, разработанное после 1970 года.
Впервые стали применяться большие интегральные схемы (БИС), которые по мощности примерно соответствовали 1000 ИС. Это привело к снижению стоимости производства компьютеров.
В 1980 г. центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью 1/4 дюйма (0,635 см 2 .). БИСы применялись уже в таких компьютерах, как “Иллиак”, ”Эльбрус”, ”Макинтош ”. Быстродействие таких машин составляет тысячи миллионов операций в секунду. Емкость ОЗУ возросла до 500 млн. двоичных разрядов. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов.
C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 — 64 Мбайт.
Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) — ведущей компании по производству больших ЭВМ, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров, создав первые персональные компьютеры- IBM PC .
Сейчас ведутся интенсивные разработки ЭВМ V поколения. Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография).
Ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие «интеллектуализации» компьютеров — устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволит общаться с ЭВМ всем пользователям, даже тем, кто не обладает специальных знаний в этой области. ЭВМ будет помощником человеку во всех областях.
Источник