Вычислительные возможности современной вычислительной техники

Вычислительные возможности современной вычислительной техники

Современные информационные технологии в учебном процессе

Возможности современной вычислительной техники в значительной степени адекватны организационно-педагогическим и методическим потребностям школьного образования:

— вычислительные — быстрое и точное преобразование любых видов информации (числовой, текстовой, графической, звуковой и др.);

— трансдьюсерные — способность компьютера к приему и выдаче информации в самой различной форме (при наличии соответствующих устройств);

— комбинаторные — возможность запоминать, сохранять, структурировать, сортировать большие объемы информации, быстро находить необходимую информацию;

— графические — представление результатов своей работы в четкой наглядной форме (текстовой, звуковой, в виде рисунков и пр.);

— моделирующие — построение информационных моделей (в том числе и динамических) реальных объектов и явлений [12, с.412].

Перечисленные возможности компьютера могут способствовать не только обеспечению первоначального становления личности ребенка, но и выявлению, развитию у него способностей, формированию умений и желания учиться, созданию условий для усвоения в полном объеме знаний и умений.

Подача эталонов для проверки учебных действий (через учебные задания или компьютерные программы), предоставление анализа причин ошибок позволяют постепенно обучать учащихся самоконтролю и самокоррекции учебно-познавательной деятельности, что должно присутствовать на каждом уроке.

Проникновение современных информационных технологий в сферу образования позволяет педагогам качественно изменить содержание, методы и организационные формы обучения. Целью этих технологий в образовании является усиление интеллектуальных возможностей учащихся в информационном обществе, а также гуманизация, индивидуализация, интенсификация процесса обучения и повышение качества обучения на всех ступенях образовательной системы. Основные педагогические цели использования средств современных информационных технологий:

1) Интенсификация всех уровней учебно-воспитательного процесса за счет применения средств современных информационных технологий:

­ повышение эффективности и качества процесса обучения;

­ повышение активности познавательной деятельности;

­ углубление межпредметных связей;

­ увеличение объема и оптимизация поиска нужной информации.

2) Развитие личности обучаемого, подготовка индивида к комфортной жизни в условиях информационного общества:

­ развитие различных видов мышления;

­ развитие коммуникативных способностей;

­ формирование умений принимать оптимальное решение или предлагать варианты решения в сложной ситуации;

­ эстетическое воспитание за счет использования компьютерной графики, технологии мультимедиа;

­ формирование информационной культуры, умений осуществлять обработку информации;

­ развитие умений моделировать задачу или ситуацию;

­ формирование умений осуществлять экспериментально–исследовательскую деятельность.

3) Работа на выполнение социального заказа общества:

­ подготовка информационно грамотной личности;

­ подготовка пользователя компьютерными средствами;

­ осуществление профориентационной работы в области информатики [12, с.255].

Принимая во внимание огромное влияние современных информационных технологий на процесс образования, многие педагоги все с большей готовностью включают их в свою методическую систему. Однако, процесс информатизации школьного образования не может произойти мгновенно, согласно какой-либо реформе, он является постепенным и непрерывным.

Практическая реализация компьютерных технологий и переход на последующие этапы информатизации связана с отбором содержания отдельных предметов с целью создания компьютерных программ. Программное обеспечение должно отражать действующий учебный план и быть сопряженным во времени с учебным планом школы. Таким образом, одной из ведущих научно-методических проблем в данном случае становится создание методологии проектирования современных учебных (информационных) технологий применительно к школьному образованию [13, с.62].

Компьютерные учебные программы заявили о себе, как о средстве обучения, в начале 70-х годов в период появления персональных компьютеров, но до сих пор не имеют общепризнанного и «узаконенного» названия. Наиболее часто встречаются такие формулировки, как: программно-методический комплекс, обучающие программы, программные средства учебного назначения, контролирующе–обучающие программы и др. Наиболее широким из них является понятие – программное средство учебного назначения.

Источник

Большая Энциклопедия Нефти и Газа

Возможности — современная вычислительная техника

Возможности современной вычислительной техники , обусловленные ее техническими характеристиками, позволяют использовать ее во многих отраслях народного хозяйства для решения сложных задач, в свою очередь это обстоятельство требует разработки более сложного трограммного обеспечения. Увеличение парка ЭВМ определяет не — 1рерывный рост числа организаций и специалистов, снимающихся разработкой программ прикладного ха-актера. Зачастую эти специалисты не имеют достаточ-юго опыта в области разработки программ, отсюда вы -: окая стоимость этих программ и низкое качество их азработок. В связи с тем что планы разработок тех или шых программ прикладного характера определяются за — [ ачами пользователей и не координируются, появляется гублирование этих разработок. [1]

Возможности современной вычислительной техники позволяют численно решить соответствующие уравнения, что очень важно. Естественно, что каждый из этих случаев имеет с точки зрения расчетов какие-то свои достоинства; однако само уравнение (5.6.12) является основным уравнением теории и позволяет единым образом рассматривать все частные случаи. [2]

Возможности современной вычислительной техники позволяют довольно легко проводить такие итерационные расчеты. Для определения каждого значения / с необходимо бывает выполнить примерно десять подсчетов. [3]

Возможности современной вычислительной техники и устройств сопряжения с объектом позволяют решать задачу структурной и параметрической идентификации в реальном времени, используя компьютер и как устройство, генерирующее различные тестовые сигналы, и как устройство, обрабатывающее сигналы отклика исследуемого объекта. Таким образом, исследуемый объект и компьютер образуют, как показано на рис. 1, замкнутый контур, что позволяет осуществить взаимную привязку во времени входных и выходных сигналов. Подобное автоматизированное рабочее место исследователя систем управления ( АРМ ИСУ) позволяет в интерактивном режиме проводить испытания, использовать различные методы обработки экспериментов, строить и анализировать модели по определенной методике фактически от эксперимента к эксперименту, уточняя и усложняя получающуюся модель. [4]

Первое — специалист должен знать и уметь использовать возможности современной вычислительной техники , включая освоение языков программирования, с тем, чтобы уметь самостоятельно составлять программы для обработки результатов экспериментов, производить расчеты по дипломному и курсовому проектированию. [5]

Из сказанного видно, что разработка методов, реализующих возможности современной вычислительной техники для исследования и оптимизации ректификационных процессов и схем разделения, весьма своевременна и может дать большой народнохозяйственный эффект. [6]

Математическое моделирование — метод, который наиболее полно, комплексно использует возможности современной вычислительной техники , позволяет заменить эксперименты на технологическом оборудовании исследованиями модели и при относительно небольших материальных затратах проанализировать различные варианты аппаратурного оформления процесса, изучить его основные особенности и вскрыть узкие места. [7]

Несмотря на весь огромный арсенал методов анализа, проблема обработки информации, превращения ее из множества неупорядоченных фактов в систему, которую можно определить как истинные знания, остается чрезвычайно сложной и в общем случае нерешенной. Парадоксально, но возможности современной вычислительной техники создают даже своеобразный тупик. [8]

Решение указанных задач может быть выполнено на основе методов моделирования. В настоящее время методы вычислительной математики и возможности современной вычислительной техники позволяют широко использовать метод математического моделирования. Этот метод открывает возможности прогнозирования. Результаты прогнозирования могут быть использованы как на стадии проектирования, так и при эксплуатации действующих установок. [9]

Существенным недостатком математического моделирования является то, что применяемый в настоящее время математический аппарат для составления математического описания не позволяет во многих случаях с достаточной полнотой отразить свойства изучаемой сложной химической системы. Принимаемые допущения нередко ощутимо искажают сущность процесса, что значительно снижает точность решения задач, несмотря на возможности современной вычислительной техники обеспечить высокую точность решения. Кроме того, при математическом моделировании не удается визуально наблюдать за ходом процесса и практические приемы метода еще недостаточно освоены инженерно-техническим персоналом. [10]

С другой стороны, метод динамического программирования успешно применяется в импульсных системах. Это объясняется тем, что в задачах с дискретным временем, описываемых уравнениями в конечных разностях, удается успешно сочетать принцип оптимальности и возможности современной вычислительной техники . Здесь N — число подынтервалов времени, на которые разбит отрезок общего времени управления. Основные затруднения при этом вызывает большой объем вычислительной работы на минимизацию функций от управляющих параметров. Эти трудности удается преодолеть лишь при использовании для вычислительных операций современных быстродействующих и обладающих большим объемом памяти вычислительных машин. [11]

Динамическое программирование целесообразно применять для импульсных систем. Это объясняется тем, что в задачах с дискретным временем, описываемых уравнениями в конечных разностях, удается успешно сочетать принцип оптимальности и возможности современной вычислительной техники при решении весьма сложных задач. Здесь N — число подынтервалов времени, на которые разбит отрезок общего времени управления. Основные затруднения при этом вызывают большой объем вычислительной работы на минимизацию функций от управляющих воздействий. Эти трудности преодолеваются лишь при использовании для вычислительных операций современных быстродействующих и обладающих большим объемом памяти вычислительных машин. Этот метод может быть применен и для оптимизации непрерывных систем путем предварительной замены непрерывных переменных дискретными. [12]

С другой стороны, метод динамического программирования успешно применяется в импульсных системах. Это объясняется тем, что в задачах с дискретным временем, описываемых уравнениями в конечных разностях, удается успешно сочетать принцип оптимальности и возможности современной вычислительной техники . Здесь N — число подынтервалов времени, на которые разбит отрезок общего времени управления. [13]

Возникший разрыв между достижениями науки и инженерной практикой требует создания современных нормативных методик — инженерных методов нового поколения, учитывающих основные закономерности загрязнения окружающей среды, использующих возможности современной вычислительной техники , экспериментального моделирования и предназначенных для пользователей-непрофессионалов. [14]

Современная вычислительная техника позволяет точно решать многие задачи, от решения которых раньше приходилось отказываться. Использование вычислительной техники идет в настоящее время по двум основным направлениям: 1) вычисления выполняются на цифровых вычислительных машинах по старым алгоритмам, приспособленным к новым условиям; 2) разрабатываются новые методы теории управления, рассчитанные на возможности современной вычислительной техники . Примером второго направления может служить [19], где предлагаются новые матричные методы расчета устойчивости, не связанные с построением характеристического полинома и рассчитанные на использование цифровых электронных вычислительных машин. [15]

Источник

Вычислительная техника — история развития, этапы и таблица поколений

Основные этапы

Процесс эволюции счетных устройств начался в древние времена и продолжается сегодня. За это время люди создали различные приспособления для счета. Краткая история их развития может быть описана с помощью основных этапов:

  1. Ручной. Это самый длительный этап. Он начался в глубокой древности, а завершился в середине XVII столетия. За это время были созданы различные ручные средства для подсчета, например, финикийские фигурки, логарифмическая линейка и т. д.
  2. Механический этап развития. Длился более двух столетий (вторая половина XVII — конец XIX века). Это время характеризуется быстрым развитием науки, что привело к появлению механических счетных машин. Они могли выполнять простые арифметические операции.
  3. Электромеханический. Среди всех этапов эволюции вычислительных устройств он оказался самым коротким. Его длительность составила лишь 60 лет. Начало электромеханическому этапу положило создание первого табулятора (1887), а завершился период в 1946 году. Созданные на этом временном отрезке устройства использовали электрический привод и реле. С их помощью скорость и точность вычислений существенно увеличились.
  4. Электронный этап начался в середине XX столетия и продолжается сегодня. Первые компьютеры имели большие размеры и существенно отличались от современных ПК.

Классификация истории развития вычислительной техники на хронологические этапы является условной. При использовании одного счетного устройства активно появлялись предпосылки для разработки следующего поколения девайсов.

Простейшие устройства

Сначала люди использовали для счета 10 пальцев на своих руках, а результаты вычислений фиксировались на камне, дереве и т. д. Когда появилась письменность, человек разработал различные способы записи цифр и системы счисления:

  • в Индии использовалась десятичная;
  • вавилоняне применяли шестидесятеричную систему.

На рубеже IV столетии до н. э. появился абак. Это приспособление представляло собой глиняную дощечку, на которую заостренным предметом наносились полоски. Вычисления осуществлялись посредством размещения на этих полосах различных предметов небольшого размера.

Первые счеты были изобретены в Китае — суанпан. Это приспособление представляло собой деревянную раму, на которой были натянуты нити в количестве 10 или больше. Еще одна веревочка располагалась перпендикулярно остальным и делила приспособление на 2 неравные части. В отделении большего размера (земля) на каждую ниточку нанизывалось по 5 косточек. Меньшее отделение называлось «небо», а каждая веревочка, расположенная в нем, содержала по 2 косточки.

В XVII веке математик Непер из Шотландии открыл логарифмы, основываясь на работе шотландского ученого, Гантер (Англия) смог создать логарифмическую линейку. Это устройство используется и сегодня, хотя его первоначальная конструкция претерпела серьезные изменения.

Изобретение Гантера позволяла выполнять следующие операции:

  • находить логарифмы;
  • операции деления и умножения;
  • находить тригонометрические функции;
  • возводить в степень.

Это устройство стало последним приспособлением домеханической эры развития вычислительной техники.

Механические машины

В 1673 году известный ученый Лейбниц изобрел устройство, которое, помимо простейших операций с числами, позволяло извлекать квадратный корень. Чтобы этот ступенчатый вычислитель мог функционировать, ученому пришлось разработать двоичную систему счисления.

Через 2 столетия французский математик Ксавье Тома де Кальмар, основываясь на работах Лейбница, изготовил арифмометр. Эта машина уже могла делить и перемножать числа. Английский ученый Бэббидж через 2 года начал создавать устройство, способное выполнять вычисления с точностью до 20 знаков после запятой. Однако этот проект так и не был завершен.

Впрочем, имя Бэббиджа навсегда вошло в историю развития счетных устройств. Именно этот человек разработал машину, управлять которой можно было программно. В качестве носителя информации использовались перфокарты. С этим же устройством связано и имя первого программиста на планете — Ада Лавлейс. Именно этой женщине удалось создать первые программы для машины Бэббиджа.

Компьютерная техника

Первый аналог компьютера был создан еще в 1887 году американцем Голлеритом. Он разработал табулятор, который представлял собой электромеханическую вычислительную машину. В конструкции устройства присутствовали реле, счетчики и специальный сортировочный ящик. Машина могла сортировать статистические данные, записанные на перфокартах. Компания, созданная Голлеритом, затем превратилась в известную корпорацию IBM.

Также стоит отметить основные изобретения и теории, давшие в будущем толчок к развитию компьютерной техники:

  • 1930 — дифференциальный анализатор (Ванновар Буш из США);
  • 1936 — создана концепция вычислительной машины (Алан Тьюринг из Англии);
  • 1937 — разработана электромеханическая машина для двоичного сложения (Джордж Стибиц из США);
  • 1938 год — сформулированы принципы работы логического устройства вычислительной машины (Клод Шеннон из США).

Начало эры

Во многом активное развитие ЭВМ связано со Второй мировой войной. Правительства некоторых стран-участниц этого конфликта стремились получить стратегическое преимущество перед противником и начали финансировать работы по разработке вычислительных машин. Пионером компьютеростроения стал инженер из Германии Цузе. Им была сконструирована машина Z3, которая могла оперировать числами с плавающей запятой, работая при этом в двоичной системе. В качестве носителя информации в ней использовалась перфолента.

Однако первым функционирующим компьютером следует считать новую машину немецкого инженера — Z4. Он же разработал и первый язык программирования под названием Планкалкюль. В 1942 году 2 американских исследователя (Джон Атанасов и Клиффорд Берри) создали машину, работающую на вакуумных трубках. Она использовала двоичный код и выполняла ряд логических операций.

При поддержке правительства Англии в 1943 году была построена первая ЭВМ — Колосс. Работы над этим устройством велись в условиях максимальной секретности.

В состав машины входило около 2000 электронных ламп. Колосс использовался для взлома немецких кодов, создаваемых с помощью шифровального устройства Энигма. После завершения войны ЭВМ была уничтожена в соответствии с личным приказом Черчилля.

Работа над архитектурой

Прообраз архитектуры современного ПК был создан в 1945 году американским ученым фон Нейманом. Он первым предложил записывать программу в форме кода непосредственно в память вычислительного устройства. В те времена в США активно работали над созданием первого компьютера, способного решать различные задачи — ENIAC. Эта машина весила порядка 30 тонн, а для ее размещения требовалось около 170 м² площади.

В состав конструкции машины входило 18000 ламп. В течение 1 секунды она выполняла 5000 операций сложения либо 300 умножения. На европейском континенте первый универсальный компьютер был создан в СССР. Команда под руководством Сергея Лебедева в 1950 году сконструировала МЭСМ (малая электронная счетная машина). Для ее работы требовалось порядка 6000 ламп, а быстродействие компьютера составляло 50 операций в секунду. Эта же группа ученых через 2 года создала большую электронную счетную машину. Ее быстродействие составляло 10000 операций в секунду.

Создание полупроводниковых приборов

Главным недостатком электронных ламп был невысокий срок службы. Так как эти устройства быстро выходили из строя, обслуживание вычислительной машины существенно усложнялось. Проблема была решена в 1947 году, когда был изобретен транзистор. Полупроводниковые устройства выполняли аналогичные функции, что и лампы, но при этом имели ряд преимуществ:

  • занимали мало места;
  • низкое энергопотребление;
  • более продолжительный срок службы.

Именно появление полупроводниковых приборов позволило компьютерам приобрести вид, напоминающий современные ПК. Благодаря работе американских инженеров Кибли и Нойса мир узнал о микросхемах. Основу этих устройств составлял германиевый либо кремниевый кристалл, на котором монтировались миниатюрные полупроводниковые приборы. Их количество достигало десятки и даже сотни тысяч.

Появление микросхем дало новый толчок к развитию ЭВМ. В 1964 году корпорация IBM представила первую машину семейства SYSTEM 360. В СССР первый компьютер на микросхемах был разработан в 1972 году, а назывался он ЕС. В его основе лежали разработки американской компании IBM. Одновременно с развитием компьютеров начинает активно совершенствоваться и программное обеспечение (софт). В 1964 году был разработан язык Бейсик, предназначенный для начинающих программистов. В 1969 году появился Паскаль, с помощью которого можно было решать различные прикладные задачи.

Персональные компьютеры

В начале 70-х годов стартовал выпуск четвертого поколения компьютеров. Это время для индустрии характеризуется началом использования в производстве вычислительной техники БИС (большая интегральная схема). Благодаря этому производительность ЭВМ достигла отметки в тысячи миллионов операций в секунду. Кроме этого, существенно снизилась и себестоимость производства ПК, что сделало их более доступными для обычного потребителя.

Одним из первых массовых компьютеров стала машина, созданная компанией Apple. Произошло это в 1976 году. В разработке ПК принимали участие Стив Возняк и Стив Джобс. Его стоимость составляла лишь 500 долларов. В 1977 году вышла вторая модель этого компьютера — Apple II. Роль этих личностей в развитии компьютерной техники сложно переоценить.

Быстрое распространение недорогих компьютеров привело к значительному падению прибыли компании IBM. Это факт вызвал беспокойство у ее руководства, и в 1979 году на рынке появился первый ПК от американского концерна. В нем был установлен процессор от Интел 8088, ОЗУ в объеме 64 Кбайт и дисковод для дискет. Специально для него компания Микрософт разработала новую операционную систему, в которой все было понятно даже новичку.

В дальнейшем наблюдалось стремительное развитие компьютерной техники. Новые процессоры начинают создаваться ежегодно и каждое новое поколение превосходит в производительности прошлое. Вся история развития ПК может быть представлена в таблице:

Поколение Элементная база Быстродействие, операций в секунду ПО Применение Примеры
I (1946−1959) Электронные лампы Не более 20000 Машинные языки Расчетные задачи ЭНИАК и МЭСМ
II (1960−1969) Полупроводниковые приборы От 100 до 500 тысяч Алгоритмические языки Экономические, инженерные и научные задачи БЭСМ-4, IBM 701
III (1970−1979) ИМС (интегральные микросхемы) Около 1 миллиона Операционные системы САПР, научные и технические задачи, АСУ ЕС 1060, IBM 360
IV (с 1980 и до настоящего времени) Микропроцессоры и БИС Минимум десятки миллионов Базы данных (БД) АРМ, работа с графикой и текстами Серверы и ПЭВМ
V (с 1990 до настоящего времени) СБИС Более миллиарда Мощные вычислительные системы, искусственный интеллект Все области Ноутбуки, рабочие станции

Сейчас компьютер можно найти практически в каждом доме, а жизнь современного человека сложно представить без ПК.

Источник

Читайте также:  Светильники потолочные эко стиль
Оцените статью
Поделиться с друзьями